This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] S. Abbasbandy, Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomians decomposition method, Appl. Math. Comput. 172 (2006) 485-490.
DOI: https://doi.org/10.1016/j.amc.2005.02.014[2] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge University Press, Cambridge, (1990).
[3] B.D. Anderson, J.B. Moore, Optimal Control-Linear Quadratic Methods, Prentice-Hall, New Jersey, (1990).
[4] M.K. Bouafoura, N.B. Braiek, controller design for integer and fractional plants using piecewise orthogonal functions, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 1267–1278.
[5] N.M. Bujurke, C. S Salimath, S.C. Shiralashetti, Numerical Solution of Stiff Systems from Nonlinear Dynamics Using Single-term Haar Wavelet Series, Nonlinear Dyn. 51 (2008) 595-605.
DOI: https://doi.org/10.1007/s11071-007-9248-8[6] N.M. Bujurke, C.S. Salimath, S.C. Shiralashetti, Computation of eigenvalues and solutions of regular Sturm-Liouville problems using Haar wavelets, J. Comp. Appl. Math. 219 (2008) 90-101.
DOI: https://doi.org/10.1016/j.cam.2007.07.005[7] N.M. Bujurke, S.C. Shiralashetti, C. S Salimath, An Application of Single-term Haar Wavelet Series in the Solution of Nonlinear Oscillator Equations, J. Comput. Appl. Math. 227 (2009) 234-244.
DOI: https://doi.org/10.1016/j.cam.2008.03.012[8] J.F. Carinena et al., Related operators and exact solutions of Schrodinger equations, Int. J. Mod. Phys. A. 13 (1998) 4913–4929.
[9] C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEEE Proc. Pt. D. 144 (1) (1997) 87-94.
DOI: https://doi.org/10.1049/ip-cta:19970702[10] S. Dhawan, S. Arora, S. Kumar, Wavelet based numerical scheme for differential equations, Int. J. of Differential Equations and Applications. 12(2) (2013) 85-94.
DOI: https://doi.org/10.12732/ijdea.v12i2.932[11] K. Diethelm et al., Pitfalls in fast numerical solvers for fractional differential equations, J. Comput. Appl. Math. 186 (2006) 482–503.
[12] M.A. El-Tawil, A.A. Bahnasawi, A. Abdel-Naby, Solving Riccati differential equation using Adomians decomposition method, Appl. Math. Comput. 157 (2004) 503-514.
DOI: https://doi.org/10.1016/j.amc.2003.08.049[13] F. Geng, Y. Lin, M. Cui, A piecewise variational iteration method for Riccati differential equations, Comput. Math. Appl. 58 (2009) 2518-2522.
DOI: https://doi.org/10.1016/j.camwa.2009.03.063[14] R. Gorenflo, Afterthoughts on interpretation of fractional derivatives and integrals, in: P. Rusev, I. Dimovski, V. Kiryakova (Eds. ), Transform Methods and Special Functions, Varna 96, Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Sofia, 1998, p.589.
[15] S. Islam, I. Aziz, B. Sarler, The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets, Math. Comput. Model. 52 (2010) 1577-1590.
DOI: https://doi.org/10.1016/j.mcm.2010.06.023[16] A. Kilicman, Z. A.A.A. Zhour, Kronecker operational metrics for fractional calculus and some applications, Appl. Math. Comput. 187 (2007) 250–265.
DOI: https://doi.org/10.1016/j.amc.2006.08.122[17] U. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simul. 68 (2005) 127-143.
[18] U. Lepik, Application of the Haar wavelet transform to solving integral and differential Equations, Proc. Estonian Acad Sci. Phys. Math. 56(1) (2007) 28-46.
[19] Y. Li, W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput. 216 (2010) 2276–2285.
DOI: https://doi.org/10.1016/j.amc.2010.03.063[20] S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput. 182 (2006) 1083-1092.
DOI: https://doi.org/10.1016/j.amc.2006.05.008[21] W.T. Reid, Riccati Differential Equations, Academic Press, NewYork, (1972).
[22] M.R. Scott, Invariant Imbedding and its Applications to Ordinary Differential Equations, Addison-Wesley, (1973).
[23] Z. Shi, Y. Cao, Application of Haar wavelet method to eigenvalue problems of high order differential equations, Appl. Math. Model. 36 (2012) (9) 4020-4026.
DOI: https://doi.org/10.1016/j.apm.2011.11.024[24] B.Q. Tang, X.F. Li, A new method for determining the solution of Riccati differential equations, Appl. Math. Comput. 194 (2007) 431-440.
[1] S. Shiralashetti, R. Mundewadi, "Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations Using Haar Wavelet Collocation Method", Bulletin of Mathematical Sciences and Applications, Vol. 18, p. 50, 2017
DOI: https://doi.org/10.18052/www.scipress.com/BMSA.18.50[2] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[3] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[4] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[5] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[6] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[7] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[8] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[9] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[10] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[11] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035[12] S. Shiralashetti, H. Ramane, R. Mundewadi, R. Jummannaver, "A Comparative Study on Haar Wavelet and Hosaya Polynomial for the numerical solution of Fredholm integral equations", Applied Mathematics and Nonlinear Sciences, Vol. 3, p. 447, 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00035