This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] O. Butkovsky, Subgemetric rates of convergence of Markov processes in the Masserstein metric, Ann. Appl. Probab. 24(2) (2014) 526-552.
[2] A. Durmus, G. Fort, E. Moulines, New conditions for subgeometric rates of convergence in the Wasserstein distance for Markov chains, Unpublished paper, 2014. Available on: https: /hal. archives-ouvertes. fr/hal-00948661v1/document.
[3] E. Nummelin, P. Tuominen, The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory, Stochastic Process Appl. 15 (1983) 295-311.
[4] S.B. Connor, G. Fort, State-dependent Foster-Lyapunov criteria for subgeometric convergence of Markov chains, Stochastic Processes and their Applications. 119 (2009) 4176-4193.
[5] S.P. Meyn, R.L. Tweedie, State-dependent criteria for convergence of Markov chains, Ann. Appl. Prob. (1994) 149-168.
[6] M.V. Lekgari, Subgeometric Ergodicity Analysis of Continuous-time Markov Chains Under Random-time State-dependent Lyapunov Drift Conditions, J. Prob. Stat. 2014 (2014), Article ID 274535.
[7] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer, (1993).
[8] R.L. Tweedie, Criteria for rates of convergence of Markov chains, in J.F.C. Kingman , G.E.H. Reuter(Eds. ), Probaility Statistics and Analysis, in: London Mathematical Society Lecture Note Series, Cambridge University Press, 1983, pp.227-250.