This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] P. Battocchio, and F. Menoncin, Optimal Pension Management in a Stochastic Framework, Insurance: Mathematics and Economics, 34, 79-95, (2004).
[2] G. Deelstra, M. Grasselli, and P. -F. Koehl, Optimal Investment Strategies in the Presence of a Minimum Guarantee, Insurance: Mathematics and Economics, 33, 189-207, (2003).
[3] G. Deelstra, M. Grasselli, and P. -F. Koehl, Optimal Design of the Guarantee for Defined Contribution Funds, Journal of Economic Dynamics and Control, 28, 2239-2260, (2004).
[4] L. Delong, R. Gerrard, and S. Haberman, MeanVariance Optimization Problems for an Accumulation Phase in a Defined Benefit Plan, Insurance: Mathematics and Economics, 42, 107-118, (2008).
[5] P. Emms, and S. Haberman, Asymptotic and Numerical Analysis of the Optimal Investment Strategy for An Insurer, Insurance: Mathematics an Economics, 40, 113-134, (2007).
[6] J. T. Eghwerido and T. O. Obilade, Optimization of Investment Returns with N- Step Utility Functions, Journal of the Nigerian Mathematical Society 33, 311-320, (2014).
[7] J. T. Eghwerido, E Efe-Eyefia, and E Ekuma-Okereke, Investment Returns with N- Step Generalized Utility Functions, ICASTOR Journal of Mathematical Sciences 9(2), 51-55, (2015).
[8] H. Hong-Chih Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model, Journal of Risk and Insurance, 77(2), 451-472, (2010).
[9] R. Korn, Worst-case scenario investment for insurers. Insur Math Econ 36, 1-11, (2005).
[10] R. Korn, and E. Korn, Option pricing and portfolio optimization. AMS, Providence, (2001).
[11] R. Korn and H. Kraft, Optimal portfolios with defaultable securities: a firms value approach. Int J Theory Appl Financ 6 793-819, (2003).
[12] R. Korn and O. Menkens, Worst-case scenario portfolio optimization: a new sto- chastic control approach. Math Methods Oper Res 62 (1) 123-140, (2005).
[13] H. Kraft and M. Steffensen, Portfolio problems stopping at first hitting time with application to default risk. Math Methods Oper Res 63, 123-150, (2006).
[14] Louis Bachelier's 'Theory of Speculation published by Princeton Press 1990, (1964).
[15] MacDonald, B. -J., an A. J.G. Cairns, Getting Feedback on Defined Contribution Pension Plans, Journal of Risk and Insurance, 76(2), 385-417, (2009).
[16] Markowitz H., Portfolio selection, Journal of Finance 7, 77-91, 19, (2005).
[17] H. Martin, Martingale pricing applied to Dynamic Portfolio Optimization and Real Options, International Journal of Theoretical and Applied Finance, Vol 11, Issue (2005).
[18] J. Mulvey and B. Shetty, Financial Planning via Multi-Stage Stochastic Optimiza- tion, Computers and Operations Research, 31(1), 1-20, (2004).
[19] Oshorne The Econometric Modelling of Financial Time Series, Second Edition Terence Mills, http: /www. cambridge. org.
[20] H. Pham, On some recent aspects of stochastic control and their applications, Probability Surveys 2 506-549, (2005).
[21] L.C.G. Rogers, The relaxed investor and parameter uncertainty Finance Stochastic 5, 131-154, (2001).
[22] W. Schachermayer, Utility maximization in incomplete markets, In: Stochastic methods in finance, Lectures given at the CIME-EMS Summer in Bressanone/Brixen, Italy, (M. Fritelli, W. Runggladier, eds. ), Springer Lecture notes in Mathematics, 1856, (2003).
[23] M. Schweizer, A guided tour through quadratic hedging approaches, in option pricing interest rates, and risk management, eds. Jouini E., Museiela M., Cvitanic J., Cambridge university Press, 538-574, (2001).
[24] Von-Neumann and Morgenstern Theory of games and economic behavior, Princeton University Press.