Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BMSA > Volume 16 > The Forgotten Topological Index of Four Operations...
< Back to Volume

The Forgotten Topological Index of Four Operations on Some Special Graphs

Full Text PDF

Abstract:

For a graph, the forgotten topological index (F-index) is defined as the sum of cubes of degrees of vertices. In 2009, Eliasi and Taeri [M. Eliasi, B. Taeri, Four new sums of graphs and their wiener indices, Discrete Appl. Math. 157 (2009) 794-803] introduced four new sums (F-sums) of graphs. In this paper we study the F-index for the F-sums of some special well-known graphs.

Info:

Periodical:
Bulletin of Mathematical Sciences and Applications (Volume 16)
Pages:
89-95
DOI:
10.18052/www.scipress.com/BMSA.16.89
Citation:
S. Ghobadi and M. Ghorbaninejad, "The Forgotten Topological Index of Four Operations on Some Special Graphs", Bulletin of Mathematical Sciences and Applications, Vol. 16, pp. 89-95, 2016
Online since:
Aug 2016
Export:
Distribution:
References:

[1] H. Abdo, D. Dimitrov and I. Gutman, On extremal trees with respect to the F–index, CORR abs/ 1509. 03574 (2015).

[2] D. M. Cvetkocic, M. Doob, H. Sachs, Spectra of graphs theory and application, Academic press, New York, (1980).

[3] N. De, SM. Nayeem, A. Pal, F–index of some graph operations. Discrete Math. Algorithm Appl. doi: 10. 1142/5179383091650057 (2016).

[4] M. Eliasi and B. Taeri, Four new sums of graphs and their wiener indices, Discrete Appl. Math. 157 (2009) 794-803.

DOI: 10.1016/j.dam.2008.07.001

[5] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.

DOI: 10.1007/s10910-015-0480-z

[6] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals total π-electron energy of alternant hydrocarbons, Chem. Phys. Let. 17 (1972) 535-538.

DOI: 10.1016/0009-2614(72)85099-1

[7] Hanyuan Deng, D. Sarala, S. K. Ayyaswamy, S. Balachandran, The Zagreb indices of four operations on graphs, Appl. Math. and Computation. 275 (2016) 422-431.

DOI: 10.1016/j.amc.2015.11.058

[8] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with Smallest and greatest zeroth–order general Randic index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425-434.

[9] X. Li, J. Zheng, A unified approach to the entremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.

[10] X. Li, H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.

Show More Hide