This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] C. Adiga, R. Balakrishnan, W. So, The skew energy of digraphs, Linear Algebra Appl. 432 (2010) 1825-1835.
[2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287-295.
[3] M. A. Bhat, S. Pirzada, On equienergetic signed graphs, Discrete Appl. Math. 189 (2015) 1-7.
[4] A. S. Bonifacio, C. T. M. Vinagre, N. M. M. de Abreu, Constructing pairs of equienergetic and non-cospectral graphs, Appl. Math. Lett. 21 (2008) 338-341.
DOI: https://doi.org/10.1016/j.aml.2007.04.002[5] V. Brankov, D. Stevanovic, I. Gutman, Equienergetic chemical trees, J. Serb. Chem. Soc. 69 (2004) 549-553.
DOI: https://doi.org/10.2298/jsc0407549b[6] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer, Berlin, (2012).
[7] D. M. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, (1980).
[8] H. A. Ganie, S. Pirzada, A. Ivanyi, Energy, Laplacian energy of double graphs and new families of equienergetic graphs, Acta Univ. Sapientiae Info. 6 (2014) 89-116.
DOI: https://doi.org/10.2478/ausi-2014-0020[9] K. A. Germina, K. S. Hameed, On signed paths, signed cycles and their energies, Appl. Math. Sci. 4 (2010) 3455-3466.
[10] K. A. Germina, K. S. Hameed, T. Zaslavsky, On product and line graphs of signed graphs, their eigenvalues and energy, Linear Algebra Appl. 435 (2011) 2432-2450.
DOI: https://doi.org/10.1016/j.laa.2010.10.026[11] E. Ghorbani, On eigenvalues of Seidel matrices and Haemers conjecture, arXiv: 1301. 0075v1.
[12] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[13] W. H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem. 68 (2012) 653-659.
[14] G. Indulal, I. Gutman, A. Vijaykumar, On the distance energy of a graph, MATCH Commun. Math. Comput. Chem. 60 (2008) 473-484.
[15] G. Indulal, A. Vijaykumar, Equienergetic self-complementary graphs, Czechoslovak Math. J. 58 (2008) 451-461.
[16] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, (2012).
[17] W. Lopez, J. Rada, Equienergetic digraphs, Int. J. Pure Appl. Math. 36 (2007) 361-372.
[18] Nageswari, P. B. Sarasija, Seidel energy and its bounds, Int. J. Math. Analysis 8 (2014) 2869-2871.
DOI: https://doi.org/10.12988/ijma.2014.410309[19] N. G. Nayak, Equienergetic net-regular signed graphs, Int. J. Contemp. Math. 9 (2014) 685-693.
[20] M. R. Oboudi, Energy and Seidel energy of graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 291-303.
[21] S. Pirzada, M. A. Bhat, Energy of signed digraphs, Discrete Appl. Math. 169 (2014) 195-205.
DOI: https://doi.org/10.1016/j.dam.2013.12.018[22] H. S. Ramane, I. Gutman, M. M. Gundloor, Seidel energy of iterated line graphs of regular graphs, Kragujevac J. Math. 39 (2015) 7-12.
DOI: https://doi.org/10.5937/kgjmath1501007r[23] H. S. Ramane, I. Gutman, D. S. Revankar, Distance equienergetic graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 473-484.
[24] H. S. Ramane, I. Gutman, H. B. Walikar, S. B. Halkarni, Equienergetic complement graphs, Kragujevac J. Sci. 27 (2005) 67-74.
[25] H. S. Ramane, K. C. Nandeesh, I. Gutman, X. Li, Skew equienergetic digraphs, Trans. Comb. 5 (2016) 15-23.
[26] H. S. Ramane, D. S. Revankar, I. Gutman, H. B. Walikar, Distance spectra and distance energies of iterated line graphs of regular graphs, Publ. Inst. Math. (Beograd) 85 (2009) 39-46.
DOI: https://doi.org/10.2298/pim0999039r[27] H. S. Ramane, H. B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 203-210.
[28] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I. Gutman, Equienergetic graphs, Kragujevac J. Math. 26 (2004) 5-13.
DOI: https://doi.org/10.1016/j.aml.2004.04.012[29] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I. Gutman, Spectra and energies of iterated line graphs of regular graphs, Appl. Math. Lett. 18 (2005) 679-682.
DOI: https://doi.org/10.1016/j.aml.2004.04.012[30] D. Stevanovic, Energy and NEPS of graphs, Lin. Multilin. Algebra 53 (2005) 67-74.
[31] L. Xu, Y. Hou, Equienergetic bipartite graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 363-370.
[1] H. Ramane, B. Parvathalu, K. Ashoka, D. Patil, "On A-energy and S-energy of certain class of graphs", Acta Universitatis Sapientiae, Informatica, Vol. 13, p. 195, 2021
DOI: https://doi.org/10.2478/ausi-2021-0009[2] H. Ramane, B. Parvathalu, K. Ashoka, D. Patil, "On A-energy and S-energy of certain class of graphs", Acta Universitatis Sapientiae, Informatica, Vol. 13, p. 195, 2021
DOI: https://doi.org/10.2478/ausi-2021-0009[3] H. Ramane, B. Parvathalu, K. Ashoka, D. Patil, "On A-energy and S-energy of certain class of graphs", Acta Universitatis Sapientiae, Informatica, Vol. 13, p. 195, 2021
DOI: https://doi.org/10.2478/ausi-2021-0009[4] H. Ramane, B. Parvathalu, K. Ashoka, D. Patil, "On A-energy and S-energy of certain class of graphs", Acta Universitatis Sapientiae, Informatica, Vol. 13, p. 195, 2021
DOI: https://doi.org/10.2478/ausi-2021-0009[5] H. Ramane, B. Parvathalu, K. Ashoka, D. Patil, "On A-energy and S-energy of certain class of graphs", Acta Universitatis Sapientiae, Informatica, Vol. 13, p. 195, 2021
DOI: https://doi.org/10.2478/ausi-2021-0009[6] H. Ramane, B. Parvathalu, K. Ashoka, D. Patil, "On A-energy and S-energy of certain class of graphs", Acta Universitatis Sapientiae, Informatica, Vol. 13, p. 195, 2021
DOI: https://doi.org/10.2478/ausi-2021-0009