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Abstract. In this work, the dynamical behavior of the system with two preys and one predator popu-
lation is investigated. The predator exhibits a Holling type II response to one prey which is harvested
and a Beddington-DeAngelis functional response to the other prey. The boundedness of the system
is analyzed. We examine the occurrence of positive equilibrium points and stability of the system at
those points. At trivial equilibrium E0 and axial equilibrium (E1), the system is found to be unstable.
Also we obtain the necessary and sufficient conditions for existence of interior equilibrium point (E6)
and local and global stability of the system at the interior equilibrium (E6). Depending upon the exis-
tence of limit cycle, the persistence condition is established for the system. The numerical simulation
infer that varying the parameters such as e and λ1 it is possible to change the dynamical behavior of
the system from limit cycle to stable spiral. It is also observed that the harvesting rate plays a crucial
role in stabilizing the system.

Introduction

Mathematical modeling for interaction between species using differential equation is one of the most
classical applications to biology. Analytical techniques with computer power paved a way for better
understanding and development of these models. Prey-predator models are relatively well-studied
example of interactions. The dynamic relationship between predators and their prey has long been
and will continue to be one of the dominant themes in mathematical ecology, due to its universal
existence and importance. The most noteworthy component in prey-predator models is the “predator’s
functional response on prey population”, it describes the amount of prey consumed by an average
predator. The stability of prey-predator systems with such functional response has been the area of
concentration for many theorists and experimentalists.

Two species models with functional responses are extensively studied in ecological literature [2, 9,
10, 14]. Interactions on two species continuous time systems with a predator and a prey limited only
to equilibrium point or to a limit cycle. Several ecological circumstances have been analyzed by in-
teraction between two or more species. The system representing the interaction between three species
shows complex dynamical behavior [3,4,6,7,8,12]. The interaction of species involving persistence
and extinction have been the area of interest for researchers [1,5,11,13].

This paper is organized as follows. We start in section 2 by defining the mathematical model
of three species population which consists of two preys and one predator. The non linear system of
differential equations governed this system is introduced. Section 3 deals with the determination of
equilibrium points and their existence conditions. In section 4, we analyzed dynamical behavior of
these equilibrium points. Global stability and persistence of the system is studied in section 5. In
section 6 to deals with Numerical simulation and discuss the problem.

Mathematical Model

This mathematical model consists of two prey and one predator species. One of the prey species is
harvested. The predator exhibits a Holling type II response to one prey and a Beddington-DeAngelis
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functional response to the other. It is also assumed that there is no interaction between the two preys.
The two prey species grow logistically and direct competition is considered between them. The math-
ematical model for the food web is given by the following system of equations

dX

dt
= rX

(
1− X

K

)
− aXZ

1 + bX
−HX

dY

dt
= sY

(
1− Y

L

)
− cY Z

1 + d1Y + d2Z
(1)

dZ

dt
=

λ1aXZ

1 + bX
+

λ2cY Z

1 + d1Y + d2Z
− eZ

Where r, s capita intrinsic growth rate for preys X and Y,K and L are carrying capacities for preys
X,Y. Also a and c are capturing rates of predator Z on X and Y · b/a and d1/c are the predators
handling time on preys X and Y · H is the constant effort harvesting rate of prey X, e is the natural
death rate of predator Z ·d2 measures the effect of anti-predator behavior of prey Y ·λ1 and λ2 are co-
efficients which measures the predators efficiency to convert prey biomass of X and Y respectively.
We non-dimensionalize the system (1) using x = bX, y = d1Y, z = d2Z and we obtain the following
system

dx

dt
= rx

[
(1− α1x)−

β1 · z
1 + x

− h

]
dy

dt
= sy

[
(1− α2y)−

β2 · z
1 + y + z

]
(2)

dz

dt
= ez

[
γ1x

1 + x
+

γ2y

1 + y + z
− 1

]
Where
α1 = 1/Kb1, α2 = 1/Ld1, β1 = a/rd2, β2 = c/sd2, γ1 = λ1a/eb, γ2 = λ2c/ed1, h = H/r
The system (2) has to be analyzed with the following initial condition
x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.

Existence of Equilibrium Points

It can be checked that the system (2) has seven non-negative equilibrium points and three of them

namely E0(0, 0, 0), E1

(
1− h

α1

0, 0

)
, E2

(
0,

1

α2

, 0

)
always exists. We show that the existence of

other equilibrium as follows
Existence of E3(x̃, ỹ, 0)
Here x̃, ỹ are the positive solutions of the following algebraic equations

rx(1− α1x− h) = 0 (3)

sy(1− α2y) = 0 (4)

Solving (3) and (4) we get

x̃ =
1− h

α1

, ỹ =
1

α2

(5)

Thus the equilibrium

E3(x̃, ỹ, 0) exists if h < 1, α1 > 0, α2 > 0 (6)
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Existence of E4(x, 0, z)
Here x, z are the positive solutions of the following algebraic equations

rx

(
1− α1x−

β1z

1 + x
− h)

)
= 0 (7)

ez

(
−1 +

γ1
1 + x

)
= 0 (8)

Solving (7) and (8) we get

x =
1

γ1 − 1
, z =

γ1
(γ1 − 1)2β1

[(1− h)(γ1 − 1)− α1] (9)

Thus the equilibrium

E4(x, 0, z) exists if γ1 > 1, (1− h)(γ1 − 1) > α1 (10)

Existence of E5(0, ŷ, ẑ)
Here ŷ, ẑ are the positive solution of the following algebraic equations

sy

(
1− α2y −

β2z

1 + y + z

)
= 0 (11)

ez

(
−1 +

γ2y

1 + y + z

)
= 0 (12)

Solving (11) and (12) we get

ŷ =
−(β2γ2 − γ2 − β2)±

√
(β2γ2 − γ2 − β2)2 + 4β2γ2α2

2γ2α2

, ẑ = ŷ(γ2 − 1)− 1 (13)

Thus the equilibrium

E5(0, ŷ, ẑ) exists if γ2 > 1 (14)

Existence of E6(x
∗, y∗, z∗)

Here (x∗, y∗, z∗) is the positive solution of the system of algebraic equation given below:

rx

[
(1− α1x)−

β1 · z
1 + x

− h

]
= 0 (15)

sy

[
(1− α2y)−

β2 · z
1 + y + z

]
= 0 (16)

ez

[
γ1x

1 + x
+

γ2y

1 + y + z
− 1

]
= 0 (17)

Eliminating z from (15), (16) and (17), we get

f(x, y) = 0 and g(x, y) = 0 (18)

Where

f(x, y) = γ2y(1 + x)[(β2 − (1− α2y)]− (1 + y)[β2(1 + x− γ1x)]) (19)
g(x, y) = (1− α1x− h)[β2(1 + x− γ1x)])− β1[γ2y(1− α2y)] (20)
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From (19) as x→ 0, y → ya is given by

ya =
−B1 +

√
B2

1 − 4A1C1

2A1
Where
A1 = γ2α2

B1 = γ2β2 − γ2 − β2
C1 = −β2
Note that ya is positive and real if β2 < 0

Also from equation (19), we have
dy

dx
=
P1

Q1
Where

P1 = γ1γ2y(β2 − 1− α2y)

Q1 = γ2(1 + x)(β2 − 1 + α2y)− β2(1 + x(1− γ1))(β2 − α2) (21)

It is clear that if P1 > 0 and Q1 < 0, it requires γ1 > 1 and β2 > α2

From (20) as x→ 0, y → yb is given by

yb =
−B2 +

√
B2

2 − 4A2C2

2A2

(22)

Where
A2 = β1γ2α2

B2 = −γ2
C2 = β2(1− h)
Note that yb is positive and real if h > 1
We also have

dy

dx
= −

∂g

∂x
∂g

∂y

We note that

dy

dx
< 0 if

∂g

∂y
< 0,

∂g

∂x
< 0 holds good.

Knowing the value of x∗, y∗, the value of z∗ can be evaluated from

z∗ =
γ2y

∗(1 + x∗)(1− α2y
∗)

β2(1 + x∗(1− γ1))
(23)

Boundedness

Theorem 1. The solutions x(t), y(t) and z(t) of system (2) initiating in R3
+ are positive and bounded

for all t ≥ 0.

Proof. Since the densities of population can never be negative, obviously the solutions x(t), y(t) and
z(t) are positive for all t ≥ 0.
From the first equation of model (2), we have
dx

dt
≤ rx(1− α1x)
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By smplifying, we have

lim
t→∞

supx(t) ≤ 1

α1

(24)

Similarly, from the second equation of model (2)

lim
t→∞

sup y(t) ≤ 1

α2

(25)

Consider Ω(t) = p1x(t) + p2y(t) + z(t). For real positive number η,

dΩ

dt
+ ηΩ(t) = p1

dx

dt
+ p2

dy

dt
+
dz

dt
+ η(p1x(t) + p2y(t) + z(t)) (26)

Choosing p1 =
eγ1
rβ1

, p2 =
eγ2
sβ2

and substituting equation (2) in (26) and simplifying, we get

dΩ

dt
+ ηΩ(t) = p1x(r + η) + p2y(s+ η)− p1rα1x

2
1 − p2sα2y

2 − p1rhx+ (η − e)z

If we choose η ≤ e, then
dΩ

dt
+ ηΩ(t) ≤ p1(r + η) + p2(s+ η)

≤ δ
Applying Birkoff Lemma on differential inequality we get,

0 ≤ Ω(x, y, z) ≤ δ

η
(1− e−ηt) +

Ω(x(0), y(0), z(0))

eηt

And for t→ ∞, 0 ≤ Ω ≤ δ

η
Thus all solutions of system (2) enter into the region

B =

{
(x, y, z) : 0 ≤ x ≤ 1

α1

, 0 ≤ y ≤ 1

α2

, 0 ≤ Ω ≤ δ

η
+ ϵ for any ϵ > 0

}

Stability Analysis

We shall examine the stability of the system (2), the variational matrix relating to every equilibrium
steady state is measured.

E(x, y, z) =


r − 2α1rx− β1rz

(1 + x)2
− hr 0

−β1rx

1 + x

0 s− 2α2sy −
β2sz(1 + z)

(1 + y + z)2
−β2sy(1 + y)

(1 + y + z)2

γ1ez

(1 + x)2
γ2ez(1 + z)

(1 + y + z)2
−e+

γ1ex

(1 + x)
+

γ2ey(1 + y)

(1 + y + z)2


Theorem 2. The trivial equilibrium point E0 is stable in z direction and unstable in x − y direction
if h < 1. Otherwise it is stable in x− z direction and unstable in y direction if h > 1.

Proof. The variational matrix for the equilibrium point at E0(0, 0, 0) is

E0 =

r − hr 0 0
0 s 0
0 0 −e


The eigen values of E0 are λ1 = r − hr, λ2 = s and λ3 = −e.
If h < 1, clearly two of the eigen vales are positive and one will be negative. In this case it is unstable
manifold in x − y direction and stable in z direction. Suppose if h > 1 it is stable in x − z direction
and unstable in y direction.
This completes the proof.
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Theorem 3. The equilibrium pointE1 is stable manifold in x−z direction and unstable in y direction
if h < 1 and 0 < γ1 < 1.

Proof. The variational matrix for the equilibrium point at E1

(
1− h

α1

, 0, 0

)
is

E1 =


r(h− 1) 0

β1r(h− 1)

α1 − (h− 1)
0 s 0

0 0 e
(h− 1)(1− γ1)− α1

α1 − (h− 1)


The eigen values of the matrix E1 are

λ1 = r(h− 1), λ2 = s and λ3 = e
(h− 1)(1− γ1)− α1

α1 − (h− 1)
.

If h < 1 and 0 < γ1 < 1 clearly two of the eigen vales are negative and one will be positive. Thus E1

is stable manifold x− z direction and unstable manifold in y direction.
This completes the proof.

Theorem 4. The equilibrium point E2 is locally asymptotically stable if h > 1 and γ2 < α2 + 1
otherwise unstable in x− z direction and stable in y direction if h < 1 and γ2 > α2 + 1.

Proof. The variational matrix for the equilibrium point at E2

(
0,

1

α2

, 0

)
is

E2 =


r(1− h) 0 0

0 −s −β2s
1 + α2

0 0
eγ2

1 + α2

− e


The eigenvalues of the matrix E2 are
λ1 = r(1− h), λ2 = −s and λ3 =

eγ2
1 + α2

− e.

If h > 1 and γ2 < α2 + 1 in this case all the eigenvalues are negative. This shows the equilibrium E2

of the system is locally asymptotically stable.
Suppose if h < 1 and γ2 > α2 + 1 in this case two of the eigen values are positive and one of them
will be negative. Hence it is unstable in x− z direction and stable in y direction.
This completes the proof.

Theorem 5. The equilibrium point E3 is locally asymptotically stable if h < 1, 0 < γ1 < 1 and
γ2 < α2 + 1.

Proof. The variational matrix for the equilibrium point at E3(x̃, ỹ, 0)

E3 =


r − 2α1rx̃− hr 0

−β1rx̃
1 + x̃

0 s− 2α2sỹ
−β2sỹ(1 + ỹ)

(1 + ỹ)2

0 0 −e+ γ1ex̃

(1 + x̃)
+
γ2ey(1 + ỹ)

(1 + ỹ)2


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Put x̃ =
1− h

α1

, ỹ =
1

α2

then

E3 =


−r(1− h) 0

β1r(h− 1)

α1 − (h− 1)

0 −s −β2s
1 + α2

0 0 e

[
γ2 − (α2 + 1)

(α2 + 1)
+

γ1(1− h)

α1 + (1− h)

]


The eigen values of the matrix E3 are −r(h− 1),−s and e
[
γ2 − (α2 + 1)

(α2 + 1)
+

γ1(1− h)

α1 + (1− h)

]
.

All the eigenvalues are negative if h < 1, 0 < γ1 < 1 and γ2 < α2 + 1. This shows the equilibrium
point E3 of the system is locally asymptotically stable.
This completes the proof.

Theorem 6. The equilibrium point E4 is locally asymptotically stable if
α1 < (1− h)(γ1 − 1) < 2α1 and γ1 > 1.

Proof. The variational matrix for the equilibrium point at E4(x, 0, z) is

E4 =


A∗

1 0
−β1rx
(1 + x)

0 B∗
1 0

γ1ez

(1 + x)2
γ2ez

(1 + z)
C∗

1


Where

A∗
1 = r − 2α1rx−

β1rz

(1 + x)2
, B∗

1 = s− β2sz

(1 + z)2
and C∗

1 = −e+ γ1ex

(1 + x)

Here x =
1

γ1 − 1
and z =

γ1
(γ1 − 1)2β1

[(1− h)(γ1 − 1)− α1]

The eigen values of the matrix E4 are negative real parts if A∗
1 < 0 and B∗

1 < 0 and C∗
1 < 0. By

simple calculation we obtain the condition α1 < (1− h)(γ1 − 1) < 2α1 and γ1 > 1.
Therefore the equilibrium point E4 of the system is locally asymptotically stable.
This completes the proof.

Theorem 7. The equilibrium point E5 is locally asymptotically stable if h > 1 and γ2 > 1.

Proof. The variational matrix for the equilibrium point at E5(0, ŷ, ẑ) gives

E5 =


A∗

2 0 0

0 B∗
2

−β2sŷ(1 + ŷ)

(1 + ŷ + ẑ)2

γ1eẑ

1

γ2eẑ(1 + ẑ)

(1 + ŷ + ẑ)2
C∗

2


Where A∗

2 = r − β1rẑ

1
− hr,B∗

2 = s− 2α2sŷ −
β2sẑ

(1 + ŷ + ẑ)2
and C∗

2 = −e+ γ2eŷ(1 + ŷ)

(1 + ŷ + ẑ)2

Here ŷ =
−(β2γ2 − γ2 − β2) +

√
(β2γ2 − γ2 − β2)2 + 4β2γ2α2

2γ2α2

,

ẑ = ŷ(γ2 − 1)− 1
The eigen values of the matrix E5 are negative real parts if A∗

2 < 0, B∗
2 < 0 and C∗

2 < 0.
By simple calculation, we obtain the condition h > 1 and γ2 > 1.
Therefore the equilibrium point E5 of the system is locally asymptotically stable in the x − y − z
direction.
This completes the proof.
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Theorem 8. The equilibrium point E6(x
∗, y∗, z∗) is locally asymptotically stable if and only if the

inequalities of (28) satisfied.

Proof. The variational matrix at the equilibrium point E6(x
∗, y∗, z∗)

E6 =

a11 0 a13
0 a22 a23
a31 a32 a33


Where

a11 = r − 2α1rx
∗ − β1rz

∗

(1 + x∗)2
− hr, a13 =

−β1rx∗

1 + x∗
, a22 = s− 2α2sy

∗ − β2sz
∗(1 + z∗)

(1 + y∗ + z∗)2

a23 =
−β2sy

∗(1 + y∗)

(1 + y∗ + z∗)2
, a31 =

γ1ez
∗

(1 + x∗)2
, a32 =

γ2ez
∗(1 + z∗)

(1 + y∗ + z∗)2
, a33 = −e+

γ1ex
∗

(1 + x∗)
+

γ2ey
∗(1 + y∗)

(1 + y∗ + z∗)2

Then the corresponding characteristic equation becomes

λ3 + A1λ
2 + A2λ+ A3 = 0

Where
A1 = −(a11 + a22 + a33)

=

[
(e+ r(h− 1)− s) +

(
2α1rx

∗ + 2α2sy
∗ +

β1rz
∗

(1 + x∗)2
+
β2sz

∗(1 + z∗)

(1 + y∗ + z∗)2

)
−
(

γ1ex
∗

(1 + x∗)
+
γ2ey

∗(1 + y∗)

(1 + y∗ + z∗)2

)]
A22 = a22a33 − a23a32 + a11a22 + a11a33 − a13a31

=

[(
s− 2α2sy

∗ − β2sz
∗(1 + z∗)

(1 + y∗ + z∗)2

)(
−e+ γ1ex

∗

(1 + x∗)
+
γ2ey

∗(1 + y∗)

(1 + y∗ + z∗)2

)]
+

[
β2sy

∗(1 + y∗)

(1 + y∗ + z∗)4
· γ2ez∗(1 + z∗)

]
+

[(
r − 2α1rx

∗ − β1rz
∗

(1 + x∗)2
− hr

)
·
(
s− 2α2sy

∗ − β2sz
∗(1 + z∗)

(1 + y∗ + z∗)2

)]
+

[(
r − 2α1rx

∗ − β1rz
∗

(1 + x∗)2
− hr

)
·
(
−e+ γ1ex

∗

(1 + x∗)
+
γ2ey

∗(1 + y∗)

(1 + y∗ + z∗)2

)]
+

[(
β1rx

∗ · γ1ez∗

(1 + x∗)3

)]
A3 = det(E∗)
= a11a32a23 − a11a22a33 + a13a22a31

= −
[
r − 2α1rx

∗ − β1rz
∗

(1 + x∗)2
− hr

]
·

[(
s− 2α2sy

∗ − β2sz
∗(1 + z∗)

(1 + y∗ + z∗)2

)
·
(
−e+ γ1ex

∗

(1 + x∗)
+
γ2ey

∗(1 + y∗)

(1 + y∗ + z∗)2

)]
−

[
r − 2α1rx

∗ − β1rz
∗

(1 + x∗)2
− hr

]
·
[
β2sy

∗(1 + y∗)

(1 + y∗ + z∗)4
· γ2ez∗(1 + z∗)

]
+

[
(β1rx

∗) · γ1ez∗

(1 + x∗)3

]
·
[
s− 2α2sy

∗ − β2sz(1 + z∗)

(1 + y∗ + z∗)2

]
Therefore an application of Routh-Hurwitz criterion shows that

a11 < 0, a22 < 0 (27)

Then the following conditions are satisfied

A1 > 0, A3 > 0 and A1A2 − A3 > 0 (28)

Hence the positive equilibrium point E6(x
∗, y∗, z∗) is asymptotically stable.

This completes the proof.
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Global Stability and Persistance

Here we show the Global Stability Analysis of the system (2) by using Lasalle’s invariance principle
and suitable Lyapunov function.
Global Stability of E2

We shall modify the system of equation (2) into a linear system to study the global stability of E2 by
considering a suitable Lyapunov function at the equilibrium point.
By letting
x = x∗ + x1; y = y∗ + y1; z = z∗ + z1
Where x1, y1, z1 are small perturbations about x∗, y∗, z∗ respectively.
The linear system of equation (2) is

dx1
dt

=

[
−α1rx

∗ +
β1rx

∗z∗

(1 + x∗)2

]
x1 +

[
−β1rx∗

(1 + x∗)

]
z1

dy1
dt

=

[
−α2sy

∗ +
β2sy

∗z∗

(1 + y∗ + z∗)2

]
y1 +

[
−β2sy∗(1 + y∗)

(1 + y∗ + z∗)2

]
z1 (29)

dz1
dt

=

[
γ1e

∗z∗

(1 + x∗)2

]
x1 +

[
γ2ez

∗(1 + z∗)

(1 + y∗ + z∗)2

]
y1 +

[
−γ2ey∗z∗

(1 + y∗ + z∗)2

]
z1

Considering a suitable Lyapunov function

V (x1, y1, z1) =
x21
2

+
y21
2y∗

+
z21
2

(30)

where y∗ is element of the equilibrium point E2.
We note that V (x1, y1, z1) is a positive definite function.
Differentiate (30) with respect to t, we get

V̇ (ẋ1, ẏ1, ż1) = x1ẋ1 +
y1ẏ1
y∗

+ z1ż1 (31)

Substituting (29) into (31), we get

V̇ (ẋ1, ẏ1, ż1) = x1

[[
−α1rx

∗ +
β1rx

∗z∗

(1 + x∗)2

]
x1 +

[
−β1rx∗

(1 + x∗)

]
z1

]
+ y1

[[
−α2s+

β2sz
∗

(1 + y∗ + z∗)2

]
y1 +

[
−β2s(1 + y∗)

(1 + y∗ + z∗)2

]
z1

]
(32)

+ z1

[[
γ1e

∗z∗

(1 + x∗)2

]
x1 +

[
γ2ez

∗(1 + z∗)

(1 + y∗ + z∗)2

]
y1 +

[
−γ2ey∗z∗

(1 + y∗ + z∗)2

]
z1

]
In the equilibrium point E2, x

∗ = 0, z∗ = 0
On simplification of (32) we have

V̇ (ẋ1, ẏ1, ż1) = [−α2s]y
2
1 +

[
−β2s

(1 + y∗)

]
y1z1

Which is negative semi definite.

Therefore E2

(
0,

1

α2

, 0

)
is Lyapunov stable.

Thus the set
S =

{
(x1, y1, z1)/V̇ (ẋ1, ẏ1, ż1) = 0

}
becomes S = {(x1, y1, z1)/y1 = 0} when it contains only the

trivial trajectory by LaSalle’s invariance principle E2

(
0,

1

α2

, 0

)
is globally asymptotically stable.
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Theorem 9. The interior equilibrium E3 is globally asymptotically stable in the interior of the quad-
rant of the x− y plane.

Proof. Let H1(x, y) =
1

xy
Clearly H1(x, y) is positive in the interior of the positive quadrant of x− y plane.
Let
h1(x, y) = rx(1− α1x− h)
h2(x, y) = sy(1− α2y)

Then ∆(x, y) =
∂

∂x
(h1H1) +

∂

∂y
(h2H1)

=
−rα1

y
− sα2

x

< 0
Using Bendixson-Dulac criteria, we note that ∆(x, y) remains the same sign and is not identically

zero in the interior of the positive quadrant of the x− y plane.
This completes the proof.

We shall now prove that E4 is globally asymptotically stable.

Theorem 10. The interior equilibriumE4 is globally asymptotically stable in the interior of the quad-
rant of the x− z plane.

Proof. Let H2(x, z) =
1

xz2
Clearly H2(x, z) is positive in the interior of the positive quadrant of x− z plane.
Let

h1(x, z) = rx

[(
1− α1x−

β1z

1 + x
− h

)]
h2(x, z) = ez

[
−1 +

γ1x

1 + x

]
Then ∆(x, z) =

∂

∂x
(h1H2) +

∂

∂z
(h2H2)

= − 1

z2

[
−e+ rα1x

x
+

−rβ1z + eγ1 + eγ1x

(1 + x)2

]
< 0

Using Bendixson-Dulac criteria, we note that ∆(x, z) remains the same sign and is not identically
zero in the interior of the positive quadrant of the x− z plane.
This completes the proof.

We shall now prove that E5 is globally asymptotically stable.

Theorem 11. The interior equilibriumE5 is globally asymptotically stable in the interior of the quad-
rant of the y − z plane.

Proof. Let H3(y, z) =
1

yz

Clearly H3(y, z) is positive in the interior of the positive quadrant of y − z plane.
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Let

h1(y, z) = sy

(
1− α2y −

β2z

1 + y + z

)
h2(y, z) = ez

[
−1 +

γ2y

1 + y + z

]
Then ∆(y, z) =

∂

∂y
(h1H3) +

∂

∂z
(h2H3)

= −sα2

z
−
(

eγ2 − sβ2
(1 + y + z)2

)
< 0

Using Bendixson-Dulac criteria, we note that ∆(y, z) remains the same sign and is not identically
zero in the interior of the positive quadrant of the y − z plane.
This completes the proof.

We shall now prove that E6 is globally asymptotically stable.

Theorem 12. The co-existence equilibrium point E6(x
∗, y∗, z∗) is globally asymptotically stable with

respect to all solutions initiating in the interior of B satisfy the following conditions

z∗ < min

(
β1R1

γ1
,
β2R2

γ2

)
,

x∗ =
γ1 − β1
β1

, (33)

y∗ <
γ2(β1 + α1R1)− β1β2

β1β2
, γ1 > β1, γ2 > β2

Proof. The proof can be reached by using Lyapunov stability theorem which gives sufficient condi-
tion.
Now let us consider a positive definite function V (x, y, z) such that

V (x, y, z) =
1

r

[
(x− x∗)− x∗ln

( x
x∗

)]
+

1

s

[
(y − y∗)

−y∗ln
(
y

y∗

)]
+

1

e

[
(z − z∗)− z∗ln

( z
z∗

)]
(34)

in the interior of the positive octant.
Differentiate (34) with respect to time t we get

V̇ = (x− x∗)
ẋ

rx
+ (y − y∗)

ẏ

sy
+ (z − z∗)

ż

ez
(35)

Using system of equation (2) into (35)

V̇ = (x− x∗)

[
1− α1x−

β1z

1 + x
− h

]
+ (y − y∗)

[
1− α2y −

β2z

1 + y + z

]
+(z − z∗)

[
γ1x

1 + x
+

γ2y

1 + y + z
− 1

]

After simple calculation we have

V̇ = −(x− x∗)2
(
α1 −

β1z
∗

(1 + x)(1 + x∗)

)
− (x− x∗)(z − z∗)

(
β1(1 + x∗)− γ1
(1 + x)(1 + x∗)

)
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−(y − y∗)2
(
α2 −

β2z
∗

(1 + y + z)(1 + y∗ + z∗)

)
− (y − y∗)(z − z∗)

(
β2(1 + y∗)− γ2(1 + z∗)

(1 + y + z)(1 + y∗ + z∗)

)
−(z − z∗)2

γ2y
∗

(1 + y + z)(1 + y∗ + z∗)

The above equation can be written as
V̇ = −[b11(x− x∗)2 + b13(x− x∗)(z − z∗) + b22(y − y∗)2 + b23(y − y∗)(z − z∗) + b33(z − z∗)2]

Where

b11 =

(
α1 −

β1z
∗

R1

)
, b13 =

(
β1(1 + x∗)− γ1

R1

)
, b22 =

(
α2 −

β2z
∗

R2

)
,

b23 =

(
β2(1 + y∗)− γ2(1 + z∗)

R2

)
, b33 =

γ2y
∗

R2

Here R1 = (1 + x)(1 + x∗), R2 = (1 + y + z)(1 + y∗ + z∗)
Then the sufficient condition that V̇ to be negative definite is
b11 > 0, b212 < 4b11b22.
Hence V is a Lyapunov function with respect to E6(x

∗, y∗, z∗).
Therefore co-existence equilibrium point E6 is globally asymptotically stable.

In the next theorem, we show that system (2) is uniformly persistent. By the permanence or per-
sistence of a system, we mean that all the species are present and none of them will go to extinction.

Theorem 13. Let the hypotheses of Theorems 9, 10 and 11 hold and then the system (2) is uniformly
persistent if following inequalities hold
(i) s(1 + z)2 > β2sz
(ii) r > (β1rẑ + hr)

Proof. We prove this theorem by method of average Lyapunov function.
Let the average Lyapunov function for system (2) be

σ(X) = xpyqzr

where p, q and r are positive constants.
Clearly σ(X) is a non-negative function defined in D of R3

+

where

D ≡

{
(x, y, z), x > 0, y > 0, z > 0, α2(1 + y + z)2 +

(eγ2 − sβ2)z

s
> 0

}
Then we have

ψ(X) =
σ̇(X)

σ(X)

= p
ẋ

x
+ q

ẏ

y
+ r

ż

z

= p

[
r

(
1− α1x−

β1z

1 + x
− h

)]
+q

[
s

(
1− α2y −

β2z

1 + y + z

)]
+r

[
e

(
γ1x

1 + x
+

γ2y

1 + y + z
− 1

)]
Further, hypotheses of Theorems 9, 10 and 11 implies that there are no-periodic orbits in the inte-
rior of positive quadrant of x− y plane, x− z plane and y − z plane.

Thus to prove that uniform persistence of the system, it is enough to show ψ(x) > 0 in R3
+ for a

suitable choice of p, q, r > 0.

Bulletin of Mathematical Sciences and Applications Vol. 16 31



ψ(E0) = p[r(1− h)] + qs− γe > 0

ψ(E1) = qs+ r

[
e(h− 1)(1− γ1)− α1

α1 − (h− 1)

]
> 0

ψ(E2) = p(r(1− h)) + r

[
eγ2

1 + α2

− e

]
> 0

ψ(E3) = r

[
e

[
γ2 − (α2 + 1)

α2 + 1
+

γ1(1− h)

α1 + (1− h)

]]
> 0

ψ(E4) = q

[
s− β2sz

(1 + z)2

]
> 0

ψ(E5) = p[r − β1γẑ − hr] > 0

We note that by increasing p to sufficiently large value ψ(E0) can be made positive.
This completes the proof.

Numerical Simulations

Analytical studies become complete only with the numerical justification of the results. A qualita-
tive analysis of the main features in the system is described by numerical simulations. Therefore, we
assign some hypothetical data in order to verify the analytical result that has been obtained. The nu-
merical experiments are conducted to examine the dynamical behavior of the system in three different
parameter sets. It is obvious that changing the parameter value changes the numerical outcomes. So
every different set of parameter gives unique results.

Let R1 be the parameter set taken as
r = 3, s = 2.5, K = 50, L = 30, a = 1, b = 0.04, c = 0.001,

λ1 = 0.125, λ2 = 0.5, e = 0.5, d1 = 0.001, d2 = 1

With the above parameter set, the system (1) has varying harvesting rate. If the intrinsic growth
rate is higher than the harvesting rate, the predator population becomes extinct and the population
density of one prey (prey 1) becomes low while that of the other becomes high (Refer Fig. 1 and 2).
If the harvesting rate exceeds the intrinsic growth rate of the prey, the prey and predator becomes
extinct. (Refer Fig.3). This implies that the harvesting rate plays a pre-dominant in the stability of
system (1).

Let R2 be the parameter set taken as
r = 2, s = 1, K = 50, L = 30, a = 1, b = 0.04, c = 0.001,

λ1 = 0.125, λ2 = 0.5, d1 = 0.001, d2 = 1, H = 0.5

In the above parameter set at e = 0.7, it is observed that stable spiral exists (see Fig. 4 and 5)
which is globally asymptotically stable.

Let R3 be the parameter set taken as
r = 2, s = 1, K = 50, L = 30, a = 1, b = 0.04, c = 0.001,

λ2 = 0.5, e = 0.5, d1 = 0.001, d2 = 1, H = 0.5

The graphical results obtained from the parameter setR3 infers that increasing the value of λ1 will
increase the population density of the predator and second prey but decrease the population density
of first prey (Refer Fig. 6-7) and phase portrait of the system (Refer Fig.8).
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Fig.1. Numerical solution of system (1) at H=0.75 

Fig.2. Numerical solution of system (1) at H=1 

Fig.3.Numerical solution of system (1) at H=3 
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Fig.4 Numerical solution of system (1) at e=0.7 

Fig.5 Phase portrait of system (1) at e=0.7 

Fig.6 Numerical solution of system (1) at 1 =0.09
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Fig.7 Numerical solution of system (1) at 1 =0.15

   Fig.8 Phase portrait of system (1) at 1 =0.15
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Conclusion

In this paper, we studied the dynamical behavior of a two prey and one predator system. In this model
system predator exhibits holling type II functional response to one prey and Bedding ton-De angelis
functional response to other. Such a different choice of functional response is useful, when handling
time for one prey is negligble where as the predator needs sufficient handling time for other.

To examine the dynamical behaviour of the system, we have first discussed the existence of pos-
sible steady states and their local stability. Global stability of the system is shown by using Lyapunov
stability theorem. The condition for the persistance in the system examined. Our Mathematical model
shows that, using the parameter H and λ1 as control, it is possible to break stable state into unstable
state. Also it is possible to keep the population level in finite time. More over the system is driven
from limit cycle to stable spiral by varying natural death of predator (e) and food conversion rate of
predator (λ1) that are globally asymptotically stable.
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