This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] B. Dubey, R.K. Upadhyay, Persistence and extinction of one prey and two predator system, J. Nonlinear Analysis. Modelling and Control, Vol. 9, No. 4, (2004) 307-329.
[2] E.A. McGehee, N. Schutt, D.A. Vasquez and E. Peacock-Lopez, Bifurcations and temporal and spatial patterns of a modified Lotka-Volterra model, Int.J. Bifurcation Chaos Appl. Sci. Eng. 18 (2008) 2223-2248.
[3] S. Gakkar and R.K. Naji, Existence of chaos in two prey and one predator system. chaos, Solutions & Fractals, 17(4) (2003) 639-649.
[4] S. Gakkar and R.K. Naji, Chaos in three species ratio dependent food chain. chaos, Solutions & Fractals 14 (2002) 771-778.
[5] H.F. Huo, Z.P. Ma and C.Y. Liu, Persistence and Stability for a Generalized Leslie-Gower Model with Stage Structure and Dispersal, Hindawi Publishing Corporation Abstract and Applied Analysis, Article ID 135843 (2009), 17 pages.
[6] S.B. Hsu, T.W. Hwang and Y. Kuang, Rich dynamics of a ratio-dependent one prey-two predators model, J. Math. Biol., Vol. 43. (2001) 377-396.
[7] D. Kesh, A.K. Sarkar and A.B. Roy, Persistence of two prey-one predator system with ratiodependent predator influence, Math. Appl. Sci., Vol. 23 (2000) 347-356.
[8] S. Kumar, S.K. Srivastava and P. Chingakham, Hopf bifuracation and stability analysis in a harvested one-predator-two-prey model, Appl. Math. Comput., Vol 129, No. 1, (2002) 107-118.
[9] M. Haque, A detailed study of the Beddington-DeAngelis predator-prey model, Math. Biosci. 234 (2011) 116.
[10] P. Lenzini and J. Rebaza, Non-constant predator harvesting on ratio-dependent prey-predator models, Appl. Math. Sci. (16)(2010) 791-803.
[11] R.K. Naji and A.T. Balasim, Dynamical behavior of a three species food chain model with Beddington- DeAngelis functional response, Chaos, Solutions and Fractals, 32 (2007), 1853- 1866.
[12] S. Gakkar and Brahampal Singh, The Dynamics of food web consisting of two preys and a harvesting predator, Chaos, Solutions and Fractals 34 (2007) 1346-1356.
[13] T.K. Kar and A. Batabyal, Persistence and Stability of a Two Prey One Predator System, International Journal of Engg. Sci. and Tech., 2(2) (2010) 174-190.
[14] D. Xiao and S. Ruan, Global dynamics of a ratio dependent predator-prey system, J. Math. Biol., 43(3) (2001) 268-290.