This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] X. Y. Wang, Z. S. Zhu, Y. K. Lu, Solitary wave solutions of the generalized Burgers-Huxley equation, J. Phys. A: Math. Gen. 23 (1990) 271-274.
DOI: https://doi.org/10.1088/0305-4470/23/3/011[2] I. Hashim, M. S. M. Noorani, B. Batiha, A note on the Adomian decomposition method for the generalized Huxley Equation, Appl. Math. Comput. 181 (2006) 1439-1445.
DOI: https://doi.org/10.1016/j.amc.2006.03.011[3] M. Sari, G. Gürarslan, A. Zeytinoglu, High-order finite difference schemes for numerical solutions of the generalized Burgers-Huxley equation, Numerical Methods for Partial Differential Equations. 27 (2010) 1313-1326.
DOI: https://doi.org/10.1002/num.20585[4] K. Hemida, M.S. Mohamed, Numerical simulation of the generalized Huxley equation by homotopy analysis method, Journal of Applied Functional Analysis. 5(2010) 344-350.
[5] K. Hemida, M.S. Mohamed, Application of homotopy analysis method to fractional order generalized Huxley equation, Journal of Applied Analysis. 7 (2012) 367-372.
[6] S. H. Hashemi, H. R. M. Daniali, D. D. Ganji, Numerical simulation of the generalized Huxley equation by He's homotopy perturbation method, Appl. Math. Comput. 192 (2007) 157-161.
DOI: https://doi.org/10.1016/j.amc.2007.02.128[7] B. Batiha, M. S. M. Noorani, I. Hashim, Numerical simulation of the generalized Huxley equation by He's variational iteration method, Appl. Math. Comput. 186 (2007) 1322-1325.
DOI: https://doi.org/10.1016/j.amc.2006.07.166[8] M. C. Bhattacharya, An explicit conditionally stable finite difference equation for heat conduction problems, Int. J. Num. Meth. Eng. 21 (1985) 239-265.
DOI: https://doi.org/10.1002/nme.1620210205[9] M. C. Bhattacharya, Finite difference solutions of partial differential equations, Commun. Appl. Numer. Meth. 6 (1990) 173-184.
[10] R. F. Handschuh, T. G. Keith, Applications of an exponential finite-difference technique, Numer. Heat Transfer. 22 (1992) 363-378.
DOI: https://doi.org/10.1080/10407789208944773[11] A. R. Bahadır, Exponential finite-difference method applied to Korteweg-de Vries equation for small times, Appl. Math. Comput. 160 (2005) 675-682.
DOI: https://doi.org/10.1016/j.amc.2003.11.025[12] B. İnan, A. R. Bahadır, Numerical solution of the one-dimensional Burgers equation: Implicit and fully implicit exponential finite difference methods, Pramana J. Phys. 81 (2013) 547-556.
DOI: https://doi.org/10.1007/s12043-013-0599-z[13] B. İnan, A. R. Bahadır, An explicit exponential finite difference method for the Burgers' equation, European International Journal of Science and Technology. 2 (2013) 61-72.
[14] B. İnan, A. R. Bahadır, A numerical solution of the Burgers' equation using a Crank-Nicolson exponential finite difference method, Journal of Mathematical and Computational Science. 4 (2014) 849-860.
[15] B. İnan, A. R. Bahadır, Two Different Exponential Finite Difference Methods for Numerical Solutions of the Linearized Burgers' Equation, International Journal of Modern Mathematical Sciences. 13 (2015) 449-461.
[16] B. İnan, A. R. Bahadır, Numerical solutions of the generalized Burgers-Huxley equation by implicit exponential finite difference method, Journal of Applied Mathematics, Statistic and Informatics. 11 (2015) 57-67.
[1] G. ÇELİKTEN, "A NUMERICAL TREATMENT OF GENERALIZED HUXLEY", Journal of Science and Arts, Vol. 21, p. 1029, 2021
DOI: https://doi.org/10.46939/J.Sci.Arts-21.4-a14