In this paper, an implicit exponential finite difference method is applied to compute the numerical solutions of the nonlinear generalized Huxley equation. The numerical solutions obtained by the present method are compared with the exact solutions and obtained by other methods to show the efficiency of the method. The comparisons showed that proposed scheme is reliable, precise and convenient alternative method for solution of the generalized Huxley equation.

Periodical:

Bulletin of Mathematical Sciences and Applications (Volume 16)

Pages:

105-111

DOI:

10.18052/www.scipress.com/BMSA.16.105

Citation:

B. Inan "A New Numerical Scheme for the Generalized Huxley Equation", Bulletin of Mathematical Sciences and Applications, Vol. 16, pp. 105-111, 2016

Online since:

Aug 2016

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] X. Y. Wang, Z. S. Zhu, Y. K. Lu, Solitary wave solutions of the generalized Burgers-Huxley equation, J. Phys. A: Math. Gen. 23 (1990) 271-274.

DOI: 10.1088/0305-4470/23/3/011[2] I. Hashim, M. S. M. Noorani, B. Batiha, A note on the Adomian decomposition method for the generalized Huxley Equation, Appl. Math. Comput. 181 (2006) 1439-1445.

DOI: 10.1016/j.amc.2006.03.011[3] M. Sari, G. Gürarslan, A. Zeytinoglu, High-order finite difference schemes for numerical solutions of the generalized Burgers-Huxley equation, Numerical Methods for Partial Differential Equations. 27 (2010) 1313-1326.

DOI: 10.1002/num.20585[4] K. Hemida, M.S. Mohamed, Numerical simulation of the generalized Huxley equation by homotopy analysis method, Journal of Applied Functional Analysis. 5(2010) 344-350.

[5] K. Hemida, M.S. Mohamed, Application of homotopy analysis method to fractional order generalized Huxley equation, Journal of Applied Analysis. 7 (2012) 367-372.

[6] S. H. Hashemi, H. R. M. Daniali, D. D. Ganji, Numerical simulation of the generalized Huxley equation by He's homotopy perturbation method, Appl. Math. Comput. 192 (2007) 157-161.

DOI: 10.1016/j.amc.2007.02.128[7] B. Batiha, M. S. M. Noorani, I. Hashim, Numerical simulation of the generalized Huxley equation by He's variational iteration method, Appl. Math. Comput. 186 (2007) 1322-1325.

DOI: 10.1016/j.amc.2006.07.166[8] M. C. Bhattacharya, An explicit conditionally stable finite difference equation for heat conduction problems, Int. J. Num. Meth. Eng. 21 (1985) 239-265.

DOI: 10.1002/nme.1620210205[9] M. C. Bhattacharya, Finite difference solutions of partial differential equations, Commun. Appl. Numer. Meth. 6 (1990) 173-184.

[10] R. F. Handschuh, T. G. Keith, Applications of an exponential finite-difference technique, Numer. Heat Transfer. 22 (1992) 363-378.

DOI: 10.1080/10407789208944773[11] A. R. Bahadır, Exponential finite-difference method applied to Korteweg-de Vries equation for small times, Appl. Math. Comput. 160 (2005) 675-682.

DOI: 10.1016/j.amc.2003.11.025[12] B. İnan, A. R. Bahadır, Numerical solution of the one-dimensional Burgers equation: Implicit and fully implicit exponential finite difference methods, Pramana J. Phys. 81 (2013) 547-556.

DOI: 10.1007/s12043-013-0599-z[13] B. İnan, A. R. Bahadır, An explicit exponential finite difference method for the Burgers' equation, European International Journal of Science and Technology. 2 (2013) 61-72.

[14] B. İnan, A. R. Bahadır, A numerical solution of the Burgers' equation using a Crank-Nicolson exponential finite difference method, Journal of Mathematical and Computational Science. 4 (2014) 849-860.

[15] B. İnan, A. R. Bahadır, Two Different Exponential Finite Difference Methods for Numerical Solutions of the Linearized Burgers' Equation, International Journal of Modern Mathematical Sciences. 13 (2015) 449-461.

[16] B. İnan, A. R. Bahadır, Numerical solutions of the generalized Burgers-Huxley equation by implicit exponential finite difference method, Journal of Applied Mathematics, Statistic and Informatics. 11 (2015) 57-67.