The possible dynamics of an ecosystem with three interconnected patches among which one population can migrate are investigated, paying attention to the consequences that possible disruption in the communicating paths can cause.

Periodical:

Bulletin of Mathematical Sciences and Applications (Volume 15)

Pages:

48-61

DOI:

10.18052/www.scipress.com/BMSA.15.48

Citation:

C. Gazzola and E. Venturino, "Dynamics of Different Topological Configurations in a Three-Patch Metapopulation Model", Bulletin of Mathematical Sciences and Applications, Vol. 15, pp. 48-61, 2016

Online since:

May 2016

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] O. Arino, A. El Abdllaoui, J. Mikram, J. Chattopadhyay. Infection on prey population may act as a biological control in ratio-dependent predator-prey model, Nonlinearity 17, pp.1101-1116, (2004).

[2] E. Beltrami, T.O. Carroll. Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol. 32, pp.857-863, (1994).

[3] J. Chattopadhyay, O. Arino. A predator-prey model with disease in the prey, Nonlinear Analysis 36, pp.747-766, (1999).

[4] J.B. Collings, Bifurcations and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bulletin of Mathematical Biology p.57, 63-76, (1995).

[5] J.T. Cronin. Movement and spatial population structure of a prairie planthopper, Ecology 84, pp.1179-1188, (2003).

[6] M. Festa-Bianchet. Bighorn sheep, in The Smithsonian book of North American mammals. D.E. Wilson, S. Ruff (Editors), Washington: Smithsonian Institution Press pp.348-350, (1999).

[7] E. González-Olivares, R. Ramos-Jiliberto. Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecological Modelling 166, pp.135-146, (2003).

[8] E. González-Olivares, R. Ramos-Jiliberto. Comments to the effect of prey refuge in a simple predator-prey model, Ecological Modelling 232, pp.158-160, (2012).

[9] E. González-Olivares, B. González-Yañez, R. Becerra-Klix. Use of refugia by prey depending on predator-prey encounters, private communication, submitted to Mathematical Biosciences and Enginering, (2016).

[10] E.J. Gustafson, R.H. Gardner. The effect of landscape heterogeneity on the probability of patch colonization, Ecology 77, pp.94-107, (1996).

[11] R.J. Gutiérrez, S. Harrison. Applying metapopulation theory to spotted owl management: a history and critique, in Metapopulations and wildlife conservation. D. R. McCollough (Ed. ), Washington: Island Press, pp.167-185, (1996).

[12] K.P. Hadeler, H.I. Freedman. Predator-prey populations with parasitic infection, J. Math. Biology 27, pp.609-631, (1989).

[13] I. Hanski. Single-species spatial dynamics may contribute to long-term rarity and commonness, Ecology, 66, pp.335-343, (1985).

[14] I. Hanski, M. Gilpin (Ed. s). Metapopulation biology: ecology, genetics and evolution. London: Academic Press, (1997).

[15] S. Harrison, A. Taylor. Empirical evidence for metapopulation dynamics, in Metapopulation biology: ecology, genetics and evolution. I. Hanski, M. Gilpin (Ed. s), London: Academic Press, pp.27-42, (1997).

[16] H. Malchow, S. Petrovskii, E. Venturino. Spatiotemporal patterns in Ecology and Epidemiology. CRC, Boca Raton, FL, (2008).

[17] G.D. Ruxton. Short term refuge use and stability of predator-prey models, Theoretical Population Biology, 47, pp.1-17, (1995).

[18] E. Venturino. The influence of diseases on Lotka Volterra systems, Rocky Mountain Journal of Mathematics, 24, pp.381-402, (1994).

[19] E. Venturino. Epidemics in predator-prey models: disease in prey, in Mathematical Population dynamics 1: Analysis of heterogeneity. O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Ed. s), Wuertz, Winnipeg, pp.381-393, (1995).

[20] E. Venturino. The effects of diseases on competing species, Math. Biosc., 174, pp.111-131, (2001).

[21] E. Venturino. Epidemics in predator-prey models: disease in the predators, IMA Journal of Mathematics Applied in Medicine and Biology, 19, pp.185-205, (2002).

[22] E. Venturino. How diseases affect symbiotic communities, Math. Biosc., 206, pp.11-30, (2007).

[23] E. Venturino. Simple metaecoepidemic models, Bulletin of Mathematical Biology, 73, pp.917-950, (2011).

[24] J.A. Wiens. Wildlife in patchy environments: metapopulations, mosaics, and management, in Metapopulations and Wildlife Conservation. D. R. McCullough (Ed. ), Washington: Island Press pp.53-84, (1996).

[25] J.A. Wiens. Metapopulation dynamics and landscape ecology, in Metapolulation Biology Ecology Genetics and Evolution. I. A. Hanski, M. E. Gilpin (Ed. s), San Diego: Academic Press, pp.43-62, (1997).

[26] J. Wu. Modeling dynamics of patchy landscapes: linking metapopulation theory, landscape ecology and conservation biology, in Yearbook in Systems Ecology (English edition) Beijing: Chinese Academy of Sciences, (1994).