Decomposition of $S^*\alpha$-continuity

V.Thiripurasundari1,a and , S.Suganya2,b

1PG and Research Department of Mathematics,
Sri S.Ramasamy Naidu Memorial College, Sattur-626 203, India.
2M.Phil Scholar, PG and Research Department of Mathematics,
Sri S.Ramasamy Naidu Memorial College, Sattur-626 203, India.

a thiripurasund@gmail.com, bsuganyavsn@gmail.com

Keywords: semi$^\ast\alpha$-open, semi$^\ast\alpha_I$-set, semi$^\ast\alpha_I$-continuity.

Abstract. The main purpose of this paper is to introduce the concepts of $S^*\alpha_I$-sets, $S^*\alpha_I$-continuity and obtain decomposition of semi$^\ast\alpha$-continuity in topological spaces.

Introduction

Levine \cite{3}, Mashhour \cite{5} et al. and Njastad \cite{6} introduced the topological notions of semi-open sets, pre-open sets and α-open sets respectively. The concept of g-closed sets was introduced and studied by levine \cite{4}. M.K.R.S.Veera Kumar \cite{10} introduced the notion of g^*-closed sets and Govindappa Navalagi defined the concept of semi α-open sets in topological spaces. Jafari et. al.\cite{12} introduced and studied the notions of g_α-closed sets and g_α-closed sets in topological spaces. Recently, Robert and Pious Missier \cite{8} introduce a new class of sets namely semi$^\ast\alpha$-open sets in topological spaces.

In recent Years, the decomposition of continuity is one of the main interest for general topologists. In 1961, Levine obtained a decomposition of continuity which was later improved by Rose \cite{9}. Tong decomposed continuity into α-continuity and A-continuity finally showed that his decomposition is independent of Levine’s. Ganster and Reilly \cite{2} have improved Tong’s decomposition result and provided a decomposition of A -continuity. Ravi \cite{11} et. al. obtained a decomposition of g-continuity. In this paper we obtain a decomposition of $S^*\alpha$-continuity in topological spaces using S^*p-continuity and $S^*\alpha_I$-continuity.

Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (simply, X and Y) denote topological space on which no separation axioms are assumed. Let A be a subset of a space X. The closure of A and the interior of A are denoted by $Cl(A)$ and $Int(A)$ respectively.

Definition 1 A subset A of a space (X, τ) is called:

(1) a semi-open set \cite{3} if $A \subseteq Cl(Int(A))$ and a semi-closed set if $Int(Cl(A)) \subseteq A$,

(2) a pre-open set \cite{5} if $A \subseteq Int(Cl(A))$ and a pre-closed set if $Cl(Int(A)) \subseteq A$,

(3) an α-open set \cite{6} if $A \subseteq Int(Cl(Int(A)))$ and an α-closed set if $Cl(Int(Cl(A))) \subseteq A$,

(4) generalized closed \cite{4} (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,

(5) a t-set \cite{13} if $Int(Cl(A)) = Int(A)$,
(6) a B-set [13] if \(A = M \cap N \) where \(M \) is open and \(N \) is a t-set,

(7) an \(\alpha B \)-set [1] if \(A = M \cap N \) where \(M \) is \(\alpha \)-open and \(N \) is a t-set,

(8) an \(\eta \)-set [7] if \(A = M \cap N \) where \(M \) is open and \(N \) is an \(\alpha \)-closed set,

(9) semi\(\star \alpha \)-open [8] if there is an \(\alpha \)-open set \(U \) in \(X \) such that \(U \subseteq A \subseteq Cl^*(U) \) or equivalently if \(A \subseteq Cl^*(\alpha Int(A)) \).

(10) semi\(\star \)-preopen [8] if \(A \subseteq Cl^*(pInt(A)) \).

For a subset \(A \) of a space \(X \), the \(\alpha \)-closure (resp. semi-closure, pre-closure) of \(A \), denoted by \(\text{Cl}^\alpha(A) \) (resp. \(s\text{Cl}^\alpha(A) \), \(p\text{Cl}^\alpha(A) \)) is the intersection of all \(\alpha \)-closed (resp. semi-closed, pre-closed) sub-
sets of \(A \) containing \(A \). Dually, the \(\alpha \)-interior (resp. semi-interior, pre-interior) of \(A \), denoted by \(\text{Int}^\alpha(A) \) (resp. \(s\text{Int}^\alpha(A) \), \(p\text{Int}^\alpha(A) \)), is the union of all \(\alpha \)-open (resp. semi-open, pre-open) subsets
of \(X \) contained in \(A \), the generalized closure of \(A \) is defined as the intersection of all \(g \)-closed sets
containing \(A \) and is denoted by \(Cl^\alpha(A) \):

Definition 2 A function \(f : X \rightarrow Y \) is said to be

1. B-continuous [13] if \(f^{-1}(V) \) is a B-set in \(X \) for every open set \(V \) of \(Y \),
2. \(\alpha B \)-continuous [1] if \(f^{-1}(V) \) is an \(\alpha B \)-set in \(X \) for every open set \(V \) of \(Y \),
3. \(\eta \)-continuous [7] if \(f^{-1}(V) \) is an \(\eta \)-set in \(X \) for every open set \(V \) of \(Y \),
4. semi\(\star \alpha \)-continuous [8] if \(f^{-1}(V) \) is semi\(\star \alpha \)-open in \(X \) for every open set \(V \) in \(Y \),
5. semi\(\star \)-pre continuous [8] if \(f^{-1}(V) \) is semi\(\star \)-preopen in \(X \) for every open set \(V \) in \(Y \).

Remark 1 In any space \((X, \tau) \),

1. Every semi\(\star \alpha \)-open set is semi\(\star \)-preopen set but not conversely.[8]
2. Every semi\(\star \alpha \)-continuous function is semi\(\star \)-pre continuous but not
 conversely.[8]

Semi\(\star \alpha_t \)-sets

Definition 3 A subset \(A \) of a topological space \((X, \tau) \) is said to be semi\(\star \alpha_t \)-set if \(A = M \cap N \) where \(M \) is a semi\(\star \alpha \)-open in \(X \) and \(N \) is a t-set in \(X \). The family of all semi\(\star \alpha_t \)-sets in a space \((X, \tau) \) is denoted by \(S^*\alpha_t(X, \tau) \).

Remark 2 The following implications are hold:

\[\eta(X) \]
\[B(X) \longrightarrow \alpha B(X) \longrightarrow S^*\alpha_t(X) \]
\[S^*\alpha O(X) \longrightarrow S^*pO(X) \]
where none of these implications are reversible as shown in the following examples.

Example 1 Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\} \). In \((X, \tau) \), the set \(\{a, c\} \) is semi-\(\alpha \)-set but not semi-\(\alpha \)-open.

Example 2 Let \(X = \{a, b, c, d\} \) and \(\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, X\} \). In \((X, \tau) \), the set \(\{b, c, d\} \) is semi-\(\alpha \)-set but not \(B \)-set.

Example 3 Let \(X = \{a, b, c, d\} \) and \(\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\} \). In \((X, \tau) \), the set \(\{b, d\} \) is semi-\(\alpha \)-set but not \(\alpha \)-set.

Example 4 Let \(X = \{a, b, c, d\} \) and \(\tau = \{\phi, \{a, c\}, \{a, c, d\}, X\} \). In \((X, \tau) \), the set \(\{a, c\} \) is semi-\(\alpha \)-set but not \(\eta \)-set.

Remark 3 The notions of semi-\(\alpha \)-sets and semi-\(\eta \)-preopen sets are independent are shown in the following example.

Example 5 Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, \{a, b\}, X\} \). In \((X, \tau) \), the set \(\{c\} \) is semi-\(\alpha \)-set but not semi-\(\eta \)-preopen and also the set \(\{a, c\} \) is semi-\(\eta \)-preopen but not semi-\(\alpha \)-set.

Theorem 1 For a subset \(A \) of a space \(X \), the following are equivalent:

1. \(A \) is semi-\(\alpha \)-open
2. \(A \) is semi-\(\alpha \)-set and semi-\(\eta \)-preopen.

Proof.

(1) \(\Rightarrow \) (2): The proof is obvious.

(2) \(\Rightarrow \) (1): Assume that \(A \) is semi-\(\alpha \)-set and semi-\(\eta \)-preopen in \(X \). Then \(A = M \cap N \) where \(M \) is semi-\(\alpha \)-open and \(N \) is a \(t \)-set in \(X \). By the hypothesis, \(A \) is semi-\(\eta \)-preopen and we have

\[
A \subseteq \text{Cl}^*(\text{pInt}(A)) = \text{Cl}^*(A \cap \text{Int}(\text{Cl}(A))) \\
\subseteq \text{Cl}^*(A) \cap \text{Cl}^*(\text{Int}(\text{Cl}(A))) \subseteq \text{Cl}^*(\text{Int}(\text{Cl}(A))) \\
M \cap N \subseteq \text{Cl}^*(\text{Int}(\text{Cl}(M \cap N))) \\
= \text{Cl}^*(\text{Int}(\text{Cl}(M))) \cap \text{Cl}^*(\text{Int}(\text{Cl}(N))) \\
\subseteq \text{Cl}^*(\text{Int}(\text{Cl}(N))) = \text{Cl}^*(\text{Int}(N)) \subseteq \text{Cl}^*(\alpha \text{Int}(N))
\]

Since \(M \) is semi-\(\alpha \)-open in \(X \), we have \(M \subseteq \text{Cl}^*(\alpha \text{Int}(M)) \)

\[
M \cap N \subseteq \text{Cl}^*(\alpha \text{Int}(M \cap N))
\]

Therefore \(A \) is semi-\(\alpha \)-open in \(X \).

semi-\(\alpha \)-continuity

Definition 4 A function \(f : X \to Y \) is said to be semi-\(\alpha \)-continuous if \(f^{-1}(V) \) is semi-\(\alpha \)-set in \(X \) for every open set \(V \) of \(Y \).

Remark 4 The following implications are hold:
where none of these implications are reversible as shown in the following examples.

Example 6 Let \(X = \{a, b, c\} \) and \(Y = \{p, q, r\} \), \(\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\} \), and \(\sigma = \{\phi, \{q\}, \{r\}, \{q, r\}, X\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) as follows: \(f(a) = p \), \(f(b) = q \), \(f(c) = r \). Then \(f \) is semi-\(\alpha_1 \)-continuous but not semi-\(\alpha \)-continuous.

Example 7 Let \(X = \{a, b, c\} \) and \(Y = \{p, q, r\} \), \(\tau = \{\phi, \{a\}, X\} \) and \(\sigma = \{\phi, \{p\}, \{r\}, \{p, r\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) as follows: \(f(a) = p \), \(f(b) = r \), \(f(c) = q \). Then \(f \) is semi-\(\alpha_1 \)-continuous but not \(B \)-continuous.

Example 8 Let \(X = \{a, b, c, d\} \) and \(Y = \{p, q, r, s\} \), \(\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\} \) and \(\sigma = \{\phi, \{s\}, \{p, s\}, \{q, s\}, \{p, q, s\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) as follows: \(f(a) = r \), \(f(b) = s \), \(f(c) = q \), \(f(d) = p \). Then \(f \) is semi-\(\alpha_1 \)-continuous but not semi-\(\alpha \)-continuous.

Example 9 Let \(X = \{a, b, c\} \) and \(Y = \{p, q, r\} \), \(\tau = \{\phi, \{a\}, \{a, b\}, X\} \) and \(\sigma = \{\phi, \{p\}, \{q\}, \{p, q\}, \{p, r\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) as follows: \(f(a) = q \), \(f(b) = r \), \(f(c) = p \). Then \(f \) is semi-\(\alpha_1 \)-continuous but not semi-\(\alpha \)-continuous.

Remark 5 The following examples show that the concept of semi-\(\alpha_1 \)-continuity and semi-\(\alpha \)-pre continuity are independent.

Example 10 Let \(X = \{a, b, c\} \) and \(Y = \{p, q, r\} \), \(\tau = \{\phi, \{a, b\}, X\} \) and \(\sigma = \{\phi, \{q\}, \{r\}, \{p, q\}, \{q, r\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) as follows \(f(a) = r \), \(f(b) = q \), \(f(c) = p \). Then \(f \) is semi-\(\alpha \)-pre continuous but not semi-\(\alpha_1 \)-continuous.

Example 11 Let \(X = \{a, b, c\} \) and \(Y = \{p, q, r\} \), \(\tau = \{\phi, \{a\}, \{a, b\}, X\} \) and \(\sigma = \{\phi, \{p\}, \{p, q\}, \{p, q\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) as follows \(f(a) = r \), \(f(b) = q \), \(f(c) = p \). Then \(f \) is semi-\(\alpha_1 \)-continuous but not semi-\(\alpha \)-pre continuous.

Theorem 2 For a function \(f : X \to Y \), the following are equivalent:

1. \(f \) is semi-\(\alpha \)-continuous.
2. \(f \) is semi-\(\alpha_1 \)-continuous and semi-\(\alpha \)-pre continuous.

Proof. The proof follows from Theorem 1.
References

