This work is licensed under a
Creative Commons Attribution 4.0 International License
C. Andrieu, G. Fort, Explicit control of subgeometric ergodicity, Technical Report, Univ. Bristol, 05: 17, 2005. (Available at http: /www. tsi. enst. fr/ gfort/biblio. html).
S.B. Connor, Coupling: Cutoffs, CFTP and Tameness. PhD Thesis, University of Warwick, (2007).
S.B. Connor and G. Fort, State-dependent Foster-Lyapunov criteria for subgeometric convergence of Markov chains, Stochastic Processes and their Applications, 119: 4176-4193, October (2009).
R. Douc, G. Fort,E. Moulines and P. Soulier, Practical drift conditions for subgeometric rates of convergence, Annals of Appl. Prob, 14(3): 1353-1377, (2004).
D. Griffeath, A maximal coupling for Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebeite 31: 360-380, (1975).
M. Hairer, Convergence of Markov processes, Lecture Notes, (2010).
M.V. Kartashov, V.V. Golomozy, Maximal Coupling Procedure and Stability of Dicrete Markov Chains, Theor. Probab. Math. Stat. 86: 93-104, (2012).
T. Lindvall, Lectures on the Coupling Method, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & SonsInc., New York, (1992).
E. Nummelin, P. Tuominen, The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory. Stochastic Process Appl. 15: 295-311, (1983).
G.O. Roberts and J.S. Rosenthal, General State space Markov chains and MCMC algorithms, Probability Survey, 1: 20-71, (2004).
F.M. Spieksma, Kolmogorov forward equation and explosiveness in countable state Markov processes, Ann. Operat. Res. DOI: 10. 1007/s10479-012-1262-7, (2012).