RELATIONS BETWEEN SCHMIDT'S, MILLER- MORENO'S GROUPS AND GROUPS WITH BASIS PROPERTY

Alkadhi M.
Al-Imam University KSA

Keywords: group with basis property, Schmidt group, Miller- Moreno group

Abstract In this paper we prove that a Schmidt's group forms a group with basis property if and only if it is a Miller- Moreno's group of type $\mathcal{G}(p, q)$ such that $p \neq q (p, q \text{ are primes})$. Therefore doesn’t group with basis property if it is a Miller- Moreno's group of type $\mathcal{G}(p, q^v), v \in \mathbb{N}, v > 1$.

1. Introduction

In our previous study of finite groups with basis property, [1] we note, that the structure of these groups is very close to some famous classes of groups, like Schmidt's and Miller- Moreno's groups.

Schmidt and Miller- Moreno groups had been studied at the beginning of the twentieth century by many mathematicians as Golfand [2], Jotrov [5], Schmidt [11], Redei [8], and others. Since these groups had been studied in details and had been classified in [3], [11], while the class of groups with basis property had been classified by Al Khalaf [1]. In this paper we wil invetsigate a relations between these classes and the intersection among them.

2. Preliminaries

Definition 2.1
An inverse semigroup (a group) S is called an inverse semigroup (a group) with basis property, if any two minimal (irreducible) generating sets (with respect to inclusion) of any subsemigroup (subgroup) H of S are equivalent (i.e. they have the same cardinality) [4]

Definition 2.2
A finite nonabelian group, in which every proper subgroup is abelian, is called a Miller- Moreno's group [7]

Definition 2.3
A finite nonnilpotent group, in which every proper subgroup is nilpotent, is called a Schmidt's group, [10]

Example 2.4
Let G be the quaternion group Q_8

$Q_8 = \langle x, y : x^4 = 1, x^2 = y^2, xy = yx^3 \rangle$.

The order of Q_8 is 8 and its nonabelian group, but all proper subgroups of Q_8 are abelian.

First, we like to know which Schmidt's and Miller- Moreno's groups are groups with basis property. Redei, [8] had classified the Miller- Moreno's group as follows: Lemma 2.5 (theorem (6.5.6))[8]

Let G be a finite Miller Moreno's group, then G is one of the followings:

1. G is the quaternion group Q_8
2. $G = \langle x, y : y^{p^x} = x^{p^{-1}} = 1, b^{-1}ab = a^{1+p^x} \rangle$, where p is a prime.
3. \(G = M(p, m, n) \) which is given by:
\[
G = \{a, b, c ; (a^m) = b^p = c^p = 1, (a, c) = a^c, b^c = cb, [a, b] = c\},
\]
where \(p \) is a prime and \(m \geq n \geq 1 \), and clearly the order \(G \) of is \(p^{m+n+1} \).

4. \(G = G(p, q^v) \) and \(G \) is a Schmidt's group.

Corollary 2.6

Let \(p \) and \(q \) be distinct primes, \(k \in \mathbb{N} \) and
\[
t = \min \{ k \in \mathbb{N} : p^k \equiv 1 \pmod{q} \}.
\]

So \(t \) is the order of \(p - \) element in the multiplicative group \(\mathbb{Z}_q^* \).

Let \(f(x) \) be an irreducible polynomial in \(\mathbb{Z}_p[x] \) dividing:
\[
x^{q-1} + x^{q-2} + \cdots + x + 1
\]

Then by [8] the degree of \(f(x) \) is \(t \) and it is the smallest positive integer such that
\[
f(x)|x^{q-1} + x^{q-2} + \cdots + x + 1
\]

Corollary 2.7

Consider the set of all pairs \((i, g(x)) \) where \(i \in \mathbb{Z}_{q^v} \), \(g(x) \in \mathbb{Z}_p[x] \).

Define on the set:
\[
\mathcal{C} = \{(i, g(x)) ; i \in \mathbb{Z}_{q^v}, g(x) \in \mathbb{Z}_p[x]\}
\]

an operation:
\[
(i, h(x)).(j, g(x)) = (i + j, h(x) + w^j g(x)), w \in \mathbb{Z}_p[x] / f(x).
\]

Then by [6] \(\mathcal{C}, \cdot \) forms a Miller-Moreno's group denoted by \(G(p, q^v) \).

Therefore \(G(p, q^v) \) has \(p \)-Sylow \(q \)-subgroups and its commutator is:
\[
(G(p, q^v)) = \{[0, h(x) : h(x) \in \mathbb{Z}_p[x]\}
\]

Lemma 2.8 (Theorem (6.5.7) [9]

Let \(G \) be a finite nonnilpotent group, but all its proper subgroups are nilpotent. Then
\[
\exists P \in \text{Syl}_p(G) \quad \text{and} \quad \exists Q \in \text{Syl}_q(G)
\]

for some distinct primes \(p \) and \(q \) such that the followings hold:

1. \(G = PQ \).
2. \(P \trianglelefteq G \).
3. \(P \) is cyclic group.
4. \(G \) is solvable.

Lemma 2.9 (Theorem 1), [1]

Let \(G \) be a finite semidirect product of a \(p \)-group \(P = \text{Fit}(G) \) (Fitting subgroup) of \(G \) by a cyclic \(q \)-group \(\langle y \rangle \) of order \(q^\beta \) where \(p \neq q \) are primes, and \(\beta \in \mathbb{N} \).

Then the group \(G \) has basis property if and only if for every element \(u \in \langle y \rangle \cdot u \neq 1 \), and for any invariant subgroup \(H \) of \(P \) the automorphism \(\Phi_u \) defines an isotopic representation on every quotient Frattini subgroup \(H \).

In, [10] it had been shown that the order of the group \(G(p, q^v) \) is \(p^\ell q^v \) is and the \(q \)-Sylow subgroups of \(G(p, q^v) \) are cyclic groups of order \(q^v \) and \(p \)-subgroup of \(G(p, q^v) \) is elementary abelian group of order \(p^\ell \) which corresponds to the commutator \((G(p, q^v)) \). Then \(\varphi(q^v) \) is a normal subgroup of \(G(p, q^v) \) and it is Sylow \(p \)-subgroup.

Let \(\langle \bar{Q} \rangle \) be the cyclic group isomorphic to Sylow \(q \)-subgroup of order \(q^v \) hence the group \(G(p, q^v) \) is a semi direct product of the group \(G(p, q^v) \) by \(\langle \bar{Q} \rangle \) s, i.e.
\[
G(p, q^v) = (G(p, q^v)) \rtimes \langle \bar{Q} \rangle = (0, h(x)) \rtimes \langle (-1, 0) \rangle, h(x) \in \mathbb{Z}_p[x].
\]

* The Fitting subgroup \(\text{Fit}(G) \) of a group is the maximum normal nilpotent subgroup.

* Isotopic representation is the representation, which is writing as direct sum of equivalent irreducible representation.
Theorem 2.10
Let G be a Schmidt's group. Then G is a group with basis property if and only if G is a Miller-Moreno's group of type $G(p, q)$ where $p \neq q$ are primes.

Proof.
Let G be a Schmidt's group satisfying basis property. Then by [1] and [11] G is a group of order $p^\alpha q^\beta, \alpha, \beta \in \mathbb{N}$ where $p \neq q$ are primes, so G is an extension of p-group $P = \text{Fit} (G)$ by the cyclic q-group $\langle y \rangle$ of order q^β. Thus

$$G = \langle P, y \rangle. O(y) = q^\beta.$$

By [9] y^q is in the center of the subgroup P since the group G satisfies basis property, and every group with basis property is Quaziprimary [1] (Quaziprimary group: It is a finite group in which every element has prime power order), hence $y^q = 1$ and $\beta = 1$.

Let M be a largest normal subgroup of G properly contained in P. Then by [1] y commutes with every element of M and by Quaziprimarity of G we get $M = \{1\}$. Thus P is an elementary abelian group and every element of $\langle y \rangle$, induces an automorphism on a group P denoted by φ. So P can be viewed as a vector space $GF(p)$ with dimension α and φ is a linear operator on the vector space P. Since $M = \{1\}$, then P doesn’t contain any invariant subspaces with respect to φ, hence

$$\alpha = \min \{ k \in \mathbb{N} : p^k \equiv 1 \pmod{q} \}.$$

By [1] the matrix A_f of the operator φ in given basis of vector space P has the form:

$$A_f = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{\alpha-1} \end{bmatrix}.$$

And A_f Associated matrix with irreducible polynomial:

$$f(x) = x^\alpha + a_{\alpha-1}x^{\alpha-1} + \cdots + a_1x + a_0,$$

over the field $GF(p)$ such that $\tilde{f}(x)$ dividing the polynomial:

$$x^{q-1} + x^{q-2} + \cdots + x + 1 \in \mathbb{Z}_p[x].$$

By [1], if $w \in P, w \neq 1$, then every element of P can be represented as $g(\varphi)w$ where $g(x) \in GF(p)[x]$. Note that if $h(x) \in GF(p)[x]$ then

$$h(\varphi)w = g(\varphi)w \Leftrightarrow f(x) \mid (h(x) - g(x)).$$

Considering P as an additive group of the field \mathbb{Z}_q. Then for any elements $u, v \in G$, there exists a unique elements $i, j \in \mathbb{Z}_q$ and $w_1, w_2 \in P$ such that:

$$u = y^iw_1,$$

$$v = y^jw_2.$$

By [1] the automorphism φ given by:

$$\varphi(w) = y^{-1}wy; \forall w \in P.$$

Now using a multiplication on G

$$uv = y^iw_1y^jw_2 = y^{i+j}\varphi^j(w_1)w_2$$

(2)
Viewing u and v as pairs $(i, h(x)), (i, g(x))$ where $g(x), h(x) \in GF(p)[x]$ and $w_1 = g(\varphi)w, w_2 = h(\varphi)w$, for $w \in P$
and considering the addition on P, we have:

$$
(i, g(x)) = (j, h(x)) \iff

i = j; g(x) \equiv h(x) (mod \ f(x))
$$

$$
i, j \in \mathbb{Z}_q.
$$

(3)

Using (3) then the multiplication (2) becomes:

$$
(i, g(x))(j, h(x)) = (i + j, w^j g(x) + h(x))
$$

(4)

So by [7] G is a Miller-Moreno's group of type $G(p, q)$.

Conversely, assuming that G a Schmidt's group, which is a Miller-Moreno's group of type $G(p, q)$. Defining G as the group (C, \cdot) and let $f(x)$ be an irreducible polynomial over the field $GF(p)$ of degree α such that

$$
\alpha = \min \{ k \in \mathbb{N} : p^k \equiv 1 (mod \ q) \},
$$

And $f(x)$ divides

$$
x^{q-1} + x^{q-2} + \cdots + x + 1.
$$

Applying the operation (4) on the set (1) and using the congruence in (3). Then we get that G is a semi-direct product of the additive group of the field $GF(p)[x]/f(x)$ by the cyclic group $\langle \langle 1, 0 \rangle \rangle$ of the order q. Now

$$
(1,0)^{-1}(0, h(x))(1,0) =

(q - 1,0)(0, h(x))(1,0) =

(q - 1, h(x))(1,0) =

(0, wh(x)).
$$

Thus $\langle (1,0) \rangle$ acts by conjugation, on the elements of

$$
\{ (0, 1), (0, w), \ldots, (0, w^{q-1}) \}
$$

has the above matrix A_f. So by [1] G is a group with basis property.

\textbf{Theorem 2.11}

Let G be a Miller-Moreno's group, which is non p- primary group. Then the group G has basis property if and only if it is a Miller-Moreno's group of type $G(p, q)$, for distinct primes, q

\textbf{Proof.}

Let G be a group with basis property and it is not primary Miller-Moreno's group, then by Theorem (2.10) G is a semi direct product of p-group P by the cyclic q- group $\langle y \rangle$, where y induces a regular automorphism on P.
Then G not nilpotent, and since all proper subgroups of G are abelian, thus G is Schmidt's group. Consequently by Theorem (2.10) G is a group of type $G(p, q)$.

Conversely, let G be a Miller Moreno's group of type $G(p, q)$, then by Theorem (2.10) it is a group of type $G(p, q)$, so it is a group with basis property.

Theorem 2.12

Let G be a Miller-Moreno's group of type $G(p, q^v)$ $p \neq q$ are primes and $v \in \mathbb{N}$. If $v > 1$, then G does not have a basis property.

Proof.

By [9] in order that G be a Miller-Moreno's group, then by Lemma (2.5) G has one of the forms:

1. G is the quaternion group Q_8, and it's a finite p-group.
2. The group G of type:
 $$G = \langle x, y : y^p \cdot x = x^p \cdot y^{p+1} = 1, b^{-1} \cdot ab = a^{1+p^v} \rangle.$$
3. The group $G = M(p, m, n)$ is a primary group of order p^{m+n+1}.
4. The group $G(p, q^v)$ and G is a Schmidt's group.

In cases (1), (2) and (3) the group G is a primary, so by [1] G is a group with basis property.

Since in case (4) G isn't primary group, and by Theorem (2.11) $G(p, q^v)$ is a group with basis property if $v=1$. Thus the group $G(p, q^v)$ hasn't basis property, when $v > 1$.

Author wish to thank Al Khalaf for the key role he has played in this paper.

References

[2] Golfand U.A. About groups, all subgroups are nilpotent. DAN SSSR 1984 T.60 No 8 p.1313-1315. (Russian)

