RELATIONS BETWEEN SCHMIDT'S, MILLER- MORENO'S GROUPS AND GROUPS WITH BASIS PROPERTY

Alkadhi M.
Al-Imam University KSA

Keywords: group with basis property, Schmidt group, Miller- Moreno group

Abstract In this paper we prove that a Schmidt's group forms a group with basis property if and only if it is a Miller- Moreno's group of type \(G(p, q) \) such that \(p \neq q (p, q \text{ are primes}) \). Therefore doesn’t group with basis property if it is a Miller- Moreno's group of type \(G(p, q^v), v \in \mathbb{N}, v > 1 \).

1. Introduction
In our previous study of finite groups with basis property, [1] we note, that the structure of these groups is very close to some famous classes of groups, like Schmidt's and Miller- Moreno's groups.

Schmidt and Miller- Moreno groups had been studied at the beginning of the twentieth century by many mathematicians as Golfand [2], Jotrov [5], Schmidt [11], Redei [8], and others. Since these groups had been studied in details and had been classified in [3], and [11], while the class of groups with basis property had been classified by Al Khalaf [1]. In this paper we will investigate a relations between these classes and the intersection among them.

2. Preliminaries

Definition 2.1
An inverse semigroup (a group) \(S \) is called an inverse semigroup (a group) with basis property, if any two minimal (irreducible) generating sets (with respect to inclusion) of any subsemigroup (subgroup) \(H \) of \(S \) are equivalent (i.e. they have the same cardinality) [4].

Definition 2.2
A finite nonabelian group, in which every proper subgroup is abelian, is called a Miller- Moreno's group [7].

Definition 2.3
A finite non-nilpotent group, in which every proper subgroup is nilpotent, is called a Schmidt's group, [10].

Example 2.4
Let \(G \) be the quaternion group \(Q_8 \)

\[
Q_8 = \langle x, y : x^4 = 1, x^2 = y^2, xy = yx^3 \rangle.
\]

The order of \(Q_8 \) is 8 and its nonabelian group, but all proper subgroups of \(Q_8 \) are abelian. First, we like to know which Schmidt's and Miller- Moreno's groups are groups with basis property. Redei, [8] had classified the Miller- Moreno's group as follows: Lemma 2.5 (theorem (6.5.6) [8]

Let \(G \) be a finite Miller Moreno's group, then \(G \) is one of the followings:

1. \(G \) is the quaternion group
2. \(G = \langle x, y : y^{p^x} = x^{p^{x+1}} = 1, b^{-1}ab = a^{1+p^x} \rangle \), where \(p \) is a prime.
3. \(G = M(p, m, n) \) which is given by:
\[
G = \langle a, b, c \mid (a^p)^m = (b^p)^n = c^d = 1, \, (a, c) = (a, b) = (a, c) \rangle,
\]
where \(p \) is a prime and \(m, n \geq 1 \), and clearly the order \(G \) of is \(p^{m+n+1} \).

4. \(G = G(p, q^v) \) and \(G \) is a Schmidt's group.

Corollary 2.6

Let \(p \) and \(q \) be distinct primes, \(k \in \mathbb{N} \) and
\[
t = \text{min} \{ k \in \mathbb{N} : p^k \equiv 1 \pmod{q} \}.
\]
So \(t \) is the order of \(p - \) element in the multiplicative group \(\mathbb{Z}_q^* \).

Let \(f(x) \) be an irreducible polynomial in \(\mathbb{Z}_p[x] \) dividing:
\[
x^{q-1} + x^{q-2} + \cdots + x + 1
\]
Then by [8] the degree of \(f(x) \) is \(t \) and it is the smallest positive integer such that
\[
f(x) \mid x^{q-1} + x^{q-2} + \cdots + x + 1
\]

Corollary 2.7

Consider the set of all pairs \((i, g(x)) \) where \(i \in \mathbb{Z}_{q^v}, \, g(x) \in \mathbb{Z}_p[x] \).

Define on the set:
\[
C = \{ (i, g(x)) \mid i \in \mathbb{Z}_{q^v}, \, g(x) \in \mathbb{Z}_p[x] \}
\]

an operation:
\[
(i, h(g(x)) \cdot (j, g(x)) = (i + j, h(g(x)) + w^i g(x)) , \, w \in \mathbb{Z}_p[x]/f(x).
\]
Then by [6] \((C, \cdot) \) forms a Miller-Moreno's group denoted by \(G(p, q^v) \).

Therefore \(G(p, q^v) \) has \(p^t \) Sylow \(q - \) subgroups and its commutator is:
\[
\{ (0, h(g(x))) \mid h(x) \in \mathbb{Z}_p[x] \}
\]

Lemma 2.8 (Theorem (6.5.7) [9]

Let \(G \) be a finite nonnilpotent group, but all its proper subgroups are nilpotent. Then
\(\exists P \in \text{Syl}_p(G) \) and \(\exists Q \in \text{Syl}_q(G) \) for some distinct primes \(p \) and \(q \) such that the followings hold:
1. \(G = PQ \).
2. \(P \triangleleft G \).
3. \(P \) is cyclic group.
4. \(G \) is solvable.

Lemma 2.9 (Theorem 1), [1]

Let \(G \) be a finite semidirect product of a \(p \)-group \(P = \text{Fit}(G) \) (Fitting subgroup) of \(G \) by a cyclic \(q \)-group \(\langle y \rangle \) of order \(q^\beta \) where \(p \neq q \) are primes, and \(\beta \in \mathbb{N} \).

Then the group \(G \) has basis property if and only if for every element \(u \in \langle y \rangle, \, u \neq 1 \), and for any invariant subgroup \(H \) of \(P \) the automorphism \(\Phi \in \text{Aut}(G) \) defines an isotopic representation on every quotient Frattini subgroup \(H \).

In, [10] it had been shown that the order of the group \(G(p, q^v) \) is \(p^t q^v \) is and the \(q \)-Sylow subgroups of \(G(p, q^v) \) are cyclic groups of order \(q^v \) and \(P \)-subgroup of \(G(p, q^v) \) is elementary abelian group of order \(p^t \) which corresponds to the commutator \(\langle G(p, q^v) \rangle \). Then \(G(p, q^v) \) is a normal subgroup of \(G(p, q^v) \) and it is Sylow \(p \)-subgroup.

Let \(\overline{Q} \) be the cyclic group isomorphic to Sylow \(q \)-subgroup of order \(q^v \), hence the group \(G(p, q^v) \) is a semi direct product of the group \(\langle G(p, q^v) \rangle \) by \(\langle \overline{Q} \rangle \), i.e.
\[
G(p, q^v) = \langle G(p, q^v) \rangle \rtimes \langle \overline{Q} \rangle = \langle 0, h(x) \rangle \rtimes \langle (-1,0) \rangle, \, h(x) \in \mathbb{Z}_p[x].
\]
Theorem 2.10
Let G be a Schmidt's group. Then G is a group with basis property if and only if G is a Miller-Moreno's group of type $G(p, q)$, where $p \neq q$ are primes.

Proof.
Let G be a Schmidt's group satisfying basis property. Then by [1] and [11] G is a group of order $p^\alpha q^\beta$, $\alpha, \beta \in \mathbb{N}$ where $p \neq q$ are primes, so G is an extension of p-group $P = \text{Fit}(G)$ by the cyclic q-group $\langle y \rangle$ of order q^β. Thus

$$G = \langle P, y \rangle, \quad O(y) = q^\beta.$$

By [9] y^q is in the center of the subgroup P since the group G satisfies basis property, and every group with basis property is Quaziprimary [1] (Quaziprimary group: It is a finite group in which every element has prime power order), hence $y^q = 1$ and $\beta = 1$.

Let M be a largest normal subgroup of G properly contained in P. Then by [1] y commutes with every element of M and by Quaziprimarity of G we get $M = \{1\}$. Thus P is an elementary abelian group and every element of $\langle y \rangle$, induces an automorphism on a group P denoted by φ. So P can be viewed as a vector space $GF(p)$ with dimension α and φ is a linear operator on the vector space P. Since $M = \{1\}$, then P doesn’t contain any invariant subspaces with respect to φ, hence

$$\alpha = \min \{ k \in \mathbb{N} : p^k \equiv 1 \mod q \}.$$

By [1] the matrix A_f of the operator φ in given basis of vector space P has the form:

$$A_f = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{\alpha-1} \end{bmatrix}.$$

And A_f associated matrix with irreducible polynomial:

$$f(x) = x^\alpha + a_{\alpha-1}x^{\alpha-1} + \cdots + a_1x + a_0,$$

over the field $GF(p)$ such that $\overline{f(x)}$ dividing the polynomial:

$$x^{q-1} + x^{q-2} + \cdots + x + 1 \in \mathbb{Z}_p[x].$$

By [1], if $w \in P, w \neq 1$, then every element of P can be represented as $g(\varphi)w$ where $g(x) \in GF(p)[x]$. Note that if $h(x) \in GF(p)[x]$ then

$$h(\varphi)w = g(\varphi)w \Rightarrow f(x)|\{h(x) - g(x)\},$$

over $GF(p)[x]/f(x)$. Considering P as an additive group of the field $GF(p)$, then for any elements $u, v \in G$, there exists a unique elements $i, j \in \mathbb{Z}_q$ and $w_1, w_2 \in P$ such that:

$$u = y^i w_1, \quad v = y^j w_2.$$

By [1] the automorphism φ given by:

$$\varphi(w) = y^{-1}wy; \quad \forall w \in P.$$

Now using a multiplication on G

$$uv = y^i w_1 y^j w_2 = y^{i+j} \varphi^j(w_1)w_2$$

(2)
Viewing \(u \) and \(v \) as pairs \((j, h(x)), (i, g(x))\) where \(g(x), h(x) \in GF(p)[x] \) and
\[w_1 = g(\varphi)w, w_2 = h(\varphi)w, \text{ for } w \in P \]
and considering the addition on \(P \), we have:
\[
(i, g(x)) = (j, h(x)) \iff i = j; g(x) \equiv h(x) (\text{mod } f(x))
\]
\[i, j \in \mathbb{Z}_q. \tag{3} \]

Using (3) then the multiplication (2) becomes:
\[
(i, g(x))(j, h(x)) = (i + j, w^j g(x) + h(x))
\]
\[\tag{4} \]
So by [7] \(G \) is a Miller-Moreno's group of type \(G(p, q) \).

Conversely, assuming that \(G \) a Schmidt's group, which is a Miller-Moreno's group of type \(G(p, q) \). Defining \(G \) as the group \((C, \cdot)\) and let \(f(x) \) be an irreducible polynomial over the field \(GF(p) \) of degree \(\alpha \) such that
\[\alpha = \min\{k \in \mathbb{N}: p^k \equiv 1 (\text{mod } q)\}, \]
And \(f(x) \) divides
\[x^{q-1} + x^{q-2} + \cdots + x + 1. \]
Applying the operation (4) on the set (1) and using the congruence in (3). Then we get that \(G \) is a semi direct product of the additive group of the field \(GF(p)[x] / f(x) \) by the cyclic group \(\langle (1,0) \rangle \) of the order \(q \). Now
\[
(1,0)^{-1}(0, h(x))(1,0) = (q - 1,0)(0, h(x))(1,0) = (q - 1, h(x))(1,0) = (0, wh(x)).
\]
Thus \(\langle (1,0) \rangle \) acts by conjugation, on the elements of
\[
\frac{GF(p)[x]}{f(x)}, \text{ so the resulting polynomial is a multiplication by } w. \text{ Thus the operator } \varphi \text{ in the basis }
\]
\[
\{(0,1), (0, w), \ldots, (0, w^{\alpha-1})\}
\]
has the above matrix \(A_f \). So by [1] \(G \) is a group with basis property.

\[\blacksquare \]

Theorem 2.11

Let \(G \) be a Miller-Moreno's group, which is non-\(p \)- primary group. Then the group \(G \) has basis property if and only if it is a Miller-Moreno's group of type \(G(p, q) \) for distinct primes, \(q \).

Proof.

Let \(G \) be a group with basis property and it is not primary Miller-Moreno's group, then by Theorem (2.10) \(G \) is a semi direct product of \(p \)-group \(P \) by the cyclic \(q \)- group \(\langle y \rangle \), where \(y \) induces a regular automorphism on \(P \).
Then G not nilpotent, and since all proper subgroups of G are abelian, thus G is Schmidt's group. Consequently by Theorem (2.10) G is a group of type $G(p, q)$.

Conversely, let G be a Miller Moreno's group of type $G(p, q)$. then by Theorem (2.10) it is a group of type $G(p, q)$, so it is a group with basis property.

Theorem 2.12

Let G be a Miller-Moreno's group of type $G(p, q^v) \quad p \neq q$ are primes and $v \in \mathbb{N}$.

If $v > 1$, then G does not have a basis property.

Proof.

By [9] in order that G be a Miller-Moreno's group, then by Lemma (2.5) G has one of the forms:

1. G is the quaternion group Q_8, and it's a finite p- group.

2. The group G of type:

 $G = \langle x, y : y^p = x^{p+1} = 1, b^{-1}ab = a^{1+p^v} \rangle$.

3. The group $G = M(p, m, n)$ is a primary group of order $p^m + n + 1$.

4. The group $G(p, q^v)$ and G is a Schmidt's group.

In cases (1),(2) and (3) the group G is a primary, so by [1] G is a group with basis property.

Since in case (4) G isn't primary group, and by Theorem (2.11) $G(p, q^v)$ is a group with basis property if $v=1$. Thus the group $G(p, q^v)$ hasn't basis property, when $v > 1$.

Author wish to thank Al Khalaf for the key role he has played in this paper.

References

[2] Golfand U.A. About groups, all subgroups are nilpotent .DAN SSSR 1984 T.60 No 8 p.1313-1315. (Russian)